Kansere ve yaşlanmaya karşı üstün dirençli farelerde Nrf2 yolağını düzenleyen faktörlerin transkriptomik düzeyde analizi

Amaç: Çıplak Kör Fareler (ÇKF), 30 yılı aşkın sıra dışı uzun yaşam sürelerine sahip olmaları ve bu uzun yaşamları boyunca kanser gelişimi göstermemeleri ile biyomedikal araştırmalarda kullanılmaktadır. Yapılan çalışmalar, ÇKF’lerin üstün bir stres direncine sahip olduğunu ve temel bir oksidatif stres mekanizması olan Nükleer faktör-eritroit 2 ilişkili faktör (Nrf2) sinyal yolağının önemli bir rolü olduğunu göstermektedir. ÇKF’leri stresten koruyan başka bir mekanizmanın ise sağlık alanında sıklıkla kullanılan kök hücreler olduğu düşünülmektedir. Bu sebeplerden dolayı yapılan çalışmanın amacı, kör farelerin fibroblast ve indüklenmiş pluripotent kök hücrelerinde Nrf2 ekspresyonunu düzenleyen faktörlerin tayin edilmesidir. Yöntem: ÇKF’ler ve laboratuvar farelerinin (Mus musculus) RNA sekanslama metodu ile elde edilen transkriptom verileri kıyaslamalı olarak analiz edildi. Bu 2 türe ait fibroblast ve indüklenmiş pluripotent kök hücrelerine ait veriler spesifik olarak Nrf2 aktivatörleri (Dpp3, Sqstm1, Palb2, Amer1, Mapk14, Trp53) ve inhibitorleri (Keap1, Siah1, Btrc) olarak kabul edilen genler açısından incelendi. Bulgular: Elde edilen bulgular, ÇFK hücrelerinde Nrf2 aktivatör ve inhibitör adayları arasındaki RNA ekspresyonları değişimlerini gösterdi. Fare fibroblast hücrelerine kıyaslandığında, ÇKF fibroblast hücrelerinde Nrf2 aktivatörü olarak kabul edilen Palb2 RNA ekspresyonunda önemli düzeyde artış (p

Transcriptomics Analysis of Nrf2 Regulators in Cancer Resistant and Long-Lived Naked Mole-Rats

Purpose: Naked mole-rats (NMR, Heterocephalus glaber) have extreme resistance to cancer although they are known as the longest-living rodent with their 30-year maximum lifespan. Therefore, NMRs have rapidly emerged as a natural model for biomedical research. Studies have shown that NMRs can better tolerate stress due to mechanisms, such as upregulation of the Nrf2 pathway. Another mechanism proposed to contribute to their protection from stress involves stem cells. Therefore, in this study, we aimed to identify the regulation of Nrf2 signaling in NMR fibroblasts and induced pluripotent stem cells (iPSCs). Methods: The transcriptomics data of NMR and laboratory mice (Mus musculus) were used in the study. Particularly, the genes that are accepted as Nrf2 activators (Dpp3, Sqstm1, Palb2, Amer1, Mapk14, Trp53) and inhibitors (Keap1, Siah1, Btrc) were comparatively analyzed in fibroblasts and iPSCs of both species. Results: Our data demonstrated differentially expressed gene expressions between different cell types. Among target Nrf2 activators, Palb2 RNA expression was found to be increased significantly (p

___

  • 1. Lewis KT, Mele J, Hornsby PJ, Buffenstein R. Stress Resistance in the Naked Mole-Rat:The Bare Essentials – A Mini-Review. Gerontology 2012; 58: 453-462.
  • 2. Lee SG, Mikhalchenko AE, Yim SH, et al. Naked mole rat induced pluripotent stem cells and their contribution to interspecific chimera. Stem Cell Rep 2017; 9: 1706-1720.
  • 3. Buffenstein R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 2008; 178: 439-445.
  • 4. Fang X, Wang J, Gladyshev VN et al. Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes. Cell Reports 2014; 8: 1354-1364.
  • 5. Andziak B, O’Connor TP, Qi W, et al. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 2006; 5: 463-471.
  • 6. Rodriguez KA, Wywial E, Perez VI, et al. Walking the Oxidative Stress Tightrope: A Perspective from the Naked Mole-Rat, the LongestLiving Rodent. Curr Pharm Des 2011; 17(22): 2290-2307.
  • 7. Waal EM, Liang H, Pierce A, et al. Elevated protein carbonylation and oxidative stress do not affect protein structure and function in the long- living naked mole-rat: a proteomic approach. Biochemical and Biophysical Research Communications 2013; 4: 815–819.
  • 8. Lewis KN, Mele J, Hayes JD, et al. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integrative & Comparative Biology 2010; 5: 829–843.
  • 9. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009; 34: 176–188.
  • 10. Bozaykut P, Karademir B, Yazgan B, et al. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factorerythroid 2-related factor 2 in hypercholesterolemia induced atherosclerosis. Free Radical Biology&Medicine 2014; 70: 174–181.
  • 11. Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert – butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 2004; 24: 1101–1112.
  • 12. Lemey C, Milhavet O, Lemaitre JM. iPSCs as a major opportunity to understand and cure age-related diseases. Biogerontology 2015; 16: 399-410.
  • 13. Lee SG, Mikhalchenko AE, Yim SH, et al. A naked mole rat iPSC line expressing drug-inducible mouse pluripotency factors developed from embryonic fibroblasts. Stem Cell Reports, 2018; 197-200.
  • 14. Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol 2010; 12, 213–223.
  • 15. Camp ND, James RG, Dawson DW, et al. Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein. J Biol Chem 2012; 24;287(9):6539-50.
  • 16. Mitra A, Ray A, Datta R, et al. “Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2”. Journal of Cellular Physiology, 2014; 229 (9): 1272–82.
  • 17. Tonelli C, Chio IIC, Tuveson DA. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal 2018;29:1727–1745.
  • 18. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in biochemical sciences 2014; 39 (4): 99-218.
  • 19. Harper JM, Salmon AB, Leiser SF, et al. Skin-derived fibroblasts from long- lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 2007; 6: 1–13.
  • 20. Salmon AB, Akha AAS, Buffenstein R, et al. Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci 2008; 63: 232-241.
  • 21. Lewis KN, Wason E, Edrey YH, et al. Regulation of Nrf2 signaling and longevity in naturally longed-lived rodents. Proc Natl Acad Sci U S A 2015; (12): 3722–3727.
  • 22. Rodriguez KA, Edrey YH, Osmulski P, et al. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS ONE 2012; 7(5):e3589.
  • 23. Bozaykut P. Cellular stress responses of long-lived and cancerresistant naked mole-rats. Turkish Journal of Biochemistry 2021; 46:2. DOI: 10.1515/tjb-2020-0480.
  • 24. Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet 2007; 39: 165– 167.
  • 25. Ma J, Cai H, Wu T, et al. PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function. Mol. Cell. Biol 2012; 32:1506–1517.
Acıbadem Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 1309-470X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: ACIBADEM MEHMET ALİ AYDINLAR ÜNİVERSİTESİ