Effects of A Spinal Brace on The Functional Profile of The Feet in Adolescent Idiopathic Scoliosis

Amaç: Adolesan idiyopatik skolyozlu (AİS) bireylerde, spinal ortezin ayak fonksiyonel profiline etkisini incelemek. Hastalar ve Yöntem: Çalışmaya çift eğrisi olan (20° ile 45° arasında) 21 AİS'li kız birey alındı. Ayakta duruş ve yürüyüş sırasında baropodometri ve stabilometri değerlendirmeleri, korse öncesi ve korselemeden yedi gün sonra, korse ile tekrarlandı. Plantar kuvvet dağılımı, temas alanı, ayak açısı, ortalama ve maksimum basınçlar, adım uzunluğu, adım genişliği, kadans, yürüyüş hızı, vücut basınç merkezi uzunluğu, salınım hızı ve güven alanı kaydedildi. Bulgular: Korseleme ayakta duruş sırasında, baropometri sonuçlarını etkilemedi (p>0,05). Sağ ayak ile karşılaştırıldığında, yürüyüş sırasında, korseli durumda korsesize göre, sol ayak plantar temas alanı fazlayken, ortalama ve maksimum basınçları azdı (p

ADOLESAN İDİYOPATİK SKOLYOZDA SPİNAL ORTEZİN AYAK FONKSİYONEL PROFİLİNE ETKİSİ

Purpose: To assess the impact of a spinal brace on the functional profile of the feet in patients with adolescentidiopathic scoliosis (AIS).Patients and Methods: The subjects were 21 female AIS patients with double curves (range: 20°–45°).Baropodometry and stabilometry analysis during standing and walking and were performed without bracing andafter 7 days of bracing. Plantar force distribution, contact area, foot angle, mean and peak foot pressures, steplength, step width, cadence, and gait speed, center of pressure path length and sway velocities and confidenceellipse area were recorded.Results: Bracing did not affect baropodometry parameters during standing (p>0.05). However, left foot plantarcontact area was greater, mean pressure and peak pressures on the left foot were lower with bracing compared towithout bracing (p0.05).Conclusion: Spinal bracing created more symmetrical plantar pressure distribution between the feet during gait.However, bracing tends to alter temporal-spatial walking parameters and disrupt gait in patients with doublecurve scoliosis.

___

  • 1. Negrini S, Minozzi S, Bettany‐Saltikov J, Zaina F, Chockalingam N, Grivas TB, et al. Braces for idiopathic scoliosis in adolescents. Spine (Phila Pa 1976) 2010;35:1285–93. doi: 10.1097/BRS.0b013e3181dc48f4
  • 2. Stokes IA. Three-dimensional terminology of spinal deformity. A report presented to the scoliosis research society by The Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 1994;19:236–48.
  • 3. Kotwicki T, Walczak A, Szulc A. Trunk rotation and hip joint range of rotation in adolescent girls with idiopathic scoliosis: does the” dinner plate” turn asymmetrically? Scoliosis 2008;3:1. doi: 10.1186/1748-7161-3-1
  • 4. Upadhyay SS, Nelson IW, Ho EK, Hsu LC, Leong JC. New prognostic factors to predict the final outcome of brace treatment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 1995;20:537–45.
  • 5. Havey RM, Gavin TM, Patwardhan AG. Stability of the Scoliotic Spine: Effect of Scoliosis Braces. Spine (Phila Pa 1976) 2016;41 Suppl 7:S18–9. doi: 10.1097/BRS.0000000000001428
  • 6. Schiller JR, Thakur NA, Eberson CP. Brace management in adolescent idiopathic scoliosis. Clin Orthop Relat Res 2010;468:670–8. doi: 10.1007/s11999-009-0884-9
  • 7. Mahaudens P, Raison M, Banse X, Mousny M, Detrembleur C. Effect of long-term orthotic treatment on gait biomechanics in adolescent idiopathic scoliosis. Spine J 2014;14:1510–9. doi: 10.1016/j. spinee.2013.08.050
  • 8. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng 2000;122:630–9.
  • 9. Deepashini H, Omar B, Paungmali A, Amaramalar N, Ohnmar H, Leonard J. An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review. Polish Annals of Medicine 2014;21:51–6. doi: 10.1016/j.poamed.2014.03.003
  • 10. Mattar R, Diab J, Wehbe S, Merhej C, Abu-Faraj ZO. Normative plantar pressure distribution in asymptomatic adult subjects: A pilot study. Beirut – Lebanon: 2015 International Conference on Advances in Biomedical Engineering (ICABME); 2015. p.230–3.
  • 11. Kramers-de Quervain IA, Müller R, Stacoff A, Grob D, Stüssi E. Gait analysis in patients with idiopathic scoliosis. Eur Spine J 2004;13:449– 56. doi: 10.1007/s00586-003-0588-x
  • 12. Wong MS, Cheng CY, Ng BK, Lam TP, Sin SW, Lee-Shum LF, et al. The effect of rigid versus flexible spinal orthosis on the gait pattern of patients with adolescent idiopathic scoliosis. Gait Posture 2008;27:189–95. doi: 10.1016/j.gaitpost.2007.03.007
  • 13. Paolucci T, Morone G, Di Cesare A, Grasso MR, Fusco A, Paolucci S, et al. Effect of Chêneau brace on postural balance in adolescent idiopathic scoliosis: a pilot study. Eur J Phys Rehab Med 2013;49:649–57.
  • 14. King HA, Moe JH, Bradford DS, Winter RB. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 1983;65:1302–13
  • 15. Risser JC. The Iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop 1957;11:111–9.
  • 16. Cobb JR. Outline for the study of scoliosis. In: AAOS, Instructional Course Lectures, Volume 5. Edited by: Edwards JW Ann Arbor: 1948:261–75.
  • 17. Ferrari K, Goti P, Sanna A, Misuri G, Gigliotti F, Duranti R, et al. Shortterm effects of bracing on exercise performance in mild idiopathic thoracic scoliosis. Lung 1997;175:299–310.
  • 18. Iodice P, Bellomo RG, Migliorini M, Megna M, Saggini R. Flexible flatfoot treatment in children with mechanical sound vibration therapy. Int J Immunopathol Pharmacol 2012;25(1 Suppl):9S–15S.
  • 19. Cuccia AM. Validity and reliability of spatio-temporal gait parameters in adolescents. Iran J Pediatr 2013;23:610–11.
  • 20. Mahaudens P, Banse X, Mousny M, Raison M, Detrembleur C. Very shortterm effect of brace wearing on gait in adolescent idiopathic scoliosis girls. Eur Spine J 2013;22:2399–406. doi: 10.1007/s00586-013-2837-y
  • 21. Mahaudens P, Thonnard JL, Detrembleur C. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J 2005;5:427–33. doi: 10.1016/j. spinee.2004.11.014
  • 22. LeBlanc R, Labelle H, Poitras B, Rivard C-H, Kratzenberg J. Evaluation 3-D de la posture chez les adolescents normaux et scoliotiques. Ann Chir 1996;50:631–6.
  • 23. Ripani M, Ciccarelli A, Morini S, Ricciardi G, Michielon G. Evaluation of foot support in rugby players: a baropodometric analysis. Sport Sci Health 2006;1:104–8.
  • 24. Latt MD, Menz HB, Fung VS, Lord SR. Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Exp Brain Res 2008;184:201–9. doi: 10.1007/ s00221-007-1094-x
  • 25. Waters RL, Lunsford BR, Perry J, Byrd R. Energy‐speed relationship of walking: standard tables. J Orthop Res 1988;6:215–22. doi: 10.1002/ jor.1100060208
  • 26. Brach JS, Berthold R, Craik R, VanSwearingen JM, Newman AB. Gait variability in community‐dwelling older adults. J Am Geriatr Soc 2001;49:1646–50.
  • 27. Wu WH, Lin XC, Meijer OG, Gao JT, Hu H, Prins MR, et al. Effects of experimentally increased trunk stiffness on thorax and pelvis rotations during walking. Hum Mov Sci 2014;33:194–202. doi: 10.1016/j. humov.2013.09.002
  • 28. Park HJ, Sim T, Suh SW, Yang JH, Koo H, Mun JH. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. Eur Spine J 2016;25:385–93. doi: 10.1007/s00586-015-3931-0
  • 29. Gur G, Dilek B, Ayhan C, Simsek E, Aras O, Aksoy S, et al. Effect of a spinal brace on postural control in different sensory conditions in adolescent idiopathic scoliosis: a preliminary analysis. Gait Posture 2015;41:93–9. doi: 10.1016/j.gaitpost.2014.09.001