Eustigmaeus absens (Acari: Stigmaeidae) türünden elde edilen kitin ve Ag-dekore edilmiş kitin nanokompozit: İzolasyonu, karakterizasyonu ve antibakteriyel aktivitesi

Eustigmaeus absens Doğan (Acari: Stigmaeidae) akar türünden kimyasal yöntemle 3D kitin elde edildi ve elde edilen kitin üzerine gümüş nanoparçacıkları dekore edildi. Elde edilen kitinler seyreltilmiş toplam yansıma-fourier dönüşümlü infrared spektroskopisi (ATR-FTIR), taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını spektrometresi (EDX) ve geçirimli elektron mikroskobu (TEM) analizleriyle karakterize edildi ve antibakteriyel aktiviteleri değerlendirildi. Elde edilen kitinin yapısında karbon (C), azot (N), oksijen (O) elementlerinin yer aldığı, eser miktarda kalsiyum (Ca) elementinin bulunduğu belirlendi. ATR-FTIR analiziyle α-kitin için karakteristik olan amid-I ve amid-II bantları gözlemlendi. SEM görüntüleri kitin yüzeyinin makro gözenekler, mikro gözenekler ve kesik nanoliflerden oluştuğunu açığa çıkardı. TEM analizleri gümüş nanoparçacıkların boyutlarının 6-20 nm arasında değiştiğini gösterdi. Stereo mikroskop ve faz-kontrast donanımlı ışık mikroskobundan alınan görüntülerle organizmanın üç boyutlu yapısını bozmadan kitinin elde edildiğini gösterdi. Ayrıca gümüş nanoparçacıklı kitinin Escherichia coli ATCC 25922 ve Staphylococcus aureus ATCC 29213 bakterilerine karşı antibakteriyel aktivite sergilediği tespit edildi.

Chitin and Ag-decorated chitin nanocomposite obtained from Eustigmaeus absens (Acari: Stigmaeidae): Isolation, characterization and antibacterial activity

3D chitin was obtained from the mite species Eustigmaeus absens Doğan (Acari: Stigmaeidae) by chemical method and silver nanoparticles were decorated on the obtained chitin. The resulting chitins were characterized by using attenuated total reflectance-Fourier Transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDX) and transmission electron microscopy (TEM) and their antibacterial activities were evaluated. It was determined that the obtained chitin from E. absens contains carbon (C), nitrogen (N), oxygen (O) elements and trace amount of calcium (Ca) element. The characteristic amide-I and amide-II bands for α-chitin were observed by ATR-FTIR analysis. SEM images revealed that the surface of the chitin consists of macropores, micropores and broken nanofibers. TEM analysis showed that the sizes of silver nanoparticles differed between 6-20 nm. Images taken from the stereo microscope and the phase-contrast equipped light microscope showed that the chitin was obtained without disturbing the 3D structure of the organism. In addition, it was defined that silver nanoparticle decorated chitin exhibited antibacterial activities against the bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213.

___

  • Abdel-Rahman, R.M., Hrdina, R., Abdel-Mohsen, A.M., Fouda, M.M., Soliman, A.Y., Mohamed, F.K. and Pinto, T.D. 2015. Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity. International Journal of Biological Macromolecules, 80: 107-120. doi: 10.1016/j.ijbiomac.2015.06.027
  • Acharya, D., Singha, K.M., Pandey, P., Mohanta, B., Rajkumari, J. and Singha, L.P. 2018. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Scientific Reports, 8: 201. doi: 10.1038/s41598-017-18590-6
  • Choi, J.P., Lee, S.M., Choi, H.I., Kim, M.H., Jeon, S.G., Jang, M.H. and Kim, Y.K. 2016. House dust mite-derived chitin enhances Th2 cell response to inhaled allergens, mainly via a TNF-α-dependent pathway. Allergy, Asthma & Immunology Research, 8 (4): 362-374. doi: 10.4168/aair.2016.8.4.362
  • Çakmak, E. and Bilican, B.K. 2021. Isolation and characterization of 3D chitin from a mite species Trachytes pauperior (Parasitiformes: Uropodina). Acarological Studies, 3 (2): 66-72. doi: 10.47121/acarolstud.908554
  • Dilkaraoğlu, S., Doğan, S., Erman, O., Sevsay, S. and Adil, S. 2016. Stigmaeid mites (Acari: Raphignathoidea: Stigmaeidae) of Harşit Valley and Örümcek Forests (Turkey). Erzincan University Journal of Science and Technology, 9: 10-72. doi: 10.18185/eufbed.18373
  • Doğan, G. 2022. Biosynthesis of silver nanoparticles using cinnamon and clove extracts and investigation of antibacterial activity. Unpublished MSc thesis. Gebze Technical University Graduate School of Natural and Applied Sciences, Gebze, Türkiye, 72 pp. [In Turkish]
  • Doğan, S. 2005. Eustigmaeus mites from Turkey (Acari: Stigmaeidae). Journal of Natural History, 39: 835-861. doi: 10.1080/00222930400001558
  • Doğan, S. 2007. Checklist of raphignathoid mites (Acari: Raphignathoidea) of Turkey. Zootaxa, 1454: 1-26. doi: 10.11646/zootaxa.1454.1.1
  • Doğan, S. 2019. Raphignathoidea (Acari: Trombidiformes) of Turkey: A review of progress on the systematics, with an updated checklist. Acarological Studies, 1 (2): 129-151.
  • Doğan, S. and Ayyıldız, N. 2023. Akarların morfolojisi. In: Genel akaroloji, Baskıda. [In Turkish]
  • Doğan, S. and Doğan, S. 2020. Newly recorded stigmaeid mites (Acariformes: Raphignathoidea: Stigmaeidae) for the fauna of Turkey. Acarological Studies, 2 (2): 94-118. [In Turkish] doi: 10.47121/acarolstud.696796
  • Dönel, G. and Doğan, S. 2011. The stigmaeid mites (Acari: Stigmaeidae) of Kelkit Valley (Turkey). Zootaxa, 2942: 1-56. doi: 10.11646/zootaxa.2942.1.1
  • Erman, O., Özkan, M., Ayyıldız, N. and Doğan, S. 2007. Checklist of the mites (Arachnida: Acari) of Turkey. Second supplement. Zootaxa, 1532: 1-21. doi: 10.11646/zootaxa.1532.1.1
  • Fan, Q.-H., Flechtmann, C.H.W. and De Moraes, D.J. 2016. Annotated catalogue of Stigmaeidae (Acari: Prostigmata), with a pictorial key to genera. Zootaxa, 4176: 1-199. doi: 10.11646/zootaxa.4176.1.1
  • Fan, Q.-H., Flechtmann, C.H.W. and De Moraes, D.J. 2019. Emendations and updates to “Annotated catalogue of Stigmaeidae (Acari: Prostigmata), with a pictorial key to genera”. Zootaxa, 4647 (1): 88-103. doi: 10.11646/zootaxa.4647.1.9
  • Fan, Q.-H. and Zhang, Z.-Q. 2005. Raphignathoidea (Acari: Prostigmata). Fauna of New Zealand, 52: 1-400.
  • Guin, D., Manorama, S.V., Latha, J.N.L. and Singh, S. 2007. Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome. The Journal of Physical Chemistry, 111 (36): 13393-13397. doi: 10.1021/jp072646k
  • Hong, K.H., Park, J.L., Sul, I.H., Youk, J.H. and Kang, T.J. 2006. Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles. Journal of Polymer Science Part B: Polymer Physics, 44 (17): 2468-2474. doi: 10.1002/polb.20913
  • Ibitoye, E.B., Lokman, I.H., Hezmee, M.N.M., Goh, Y.M., Zuki, A.B.Z. and Jimoh, A.A. 2018. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials, 13 (2): 025009. doi: 10.1088/1748-605X/aa9dde
  • Jang, M.K., Kong, B.G., Jeong, Y.I., Lee, C.H. and Nah, J.W. 2004. Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42: 3423-3432. doi: 10.1002/pola.20176
  • Kaya, M., Baran, T., Erdoğan, S., Menteş, A., Özüsağlam, M.A. and Çakmak, Y.S. 2014a. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Materials Science and Engineering, 45: 72-81. doi: 10.1016/j.msec.2014.09.004
  • Kaya, M., Baublys, V., Sargin, I., Šatkauskienė, I., Paulauskas, A., Akyuz, B., Bulut, E., Tubelytė, V., Baran, T., Seyyar, O., Kabalak, M. and Yurtmen, H. 2015. How taxonomic relations affect the physicochemical properties of chitin. Food Biophysics, 11 (1): 10-19. doi: 10.1007/s11483-015-9404-5
  • Kaya, M., Sargin, I., Sabeckis, I., Noreikaite, D., Erdonmez, D., Salaberria, A.M., Labidi, J., Baublys, V. and Tubelytė, V. 2017. Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach. Carbohydrate Polymers, 163: 162-169. doi: 10.1016/j.carbpol.2017.01.022
  • Kaya, M., Seyyar, O., Baran, T., Erdoğan, S. and Kar, M. 2014b. A physicochemical characterization of fully acetylated chitin structure isolated from two spider species: With new surface morphology. International Journal of Biological Macromolecules, 65: 553-558. doi: 10.1016/j.ijbiomac.2014.02.010
  • Kaya, M., Sofi, K., Sargin, I. and Mujtaba, M. 2016. Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydrate Polymers, 145: 64-70. doi: 10.1016/j.carbpol.2016.03.010
  • Kanmani, P. and Lim, S.T., 2013. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochemistry, 48 (7): 1099-1106. doi: 10.1016/j.procbio.2013.05.011
  • Kim, M.-W., Song, Y.-S., Han, Y.S., Jo, Y.H., Choi, M.H., Park, Y.-K., Kang, S.H., Kim, S.-A., Choi, C. and Jung, W.-J. 2017. Production of chitin and chitosan from the exoskeleton of adult two‐spotted field crickets (Gryllus bimaculatus). Entomological Research, 47 (5): 279-285. doi: 10.1111/1748-5967.12239
  • Kim, Y.H., Lee, D.K. and Kang, Y.S. 2005. Synthesis and characterization of Ag and Ag-SiO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 257-258: 273-276. doi: 10.1016/j.colsurfa.2004.07.035
  • Koçer, İ. 2015. Synthesis and characterization of chitosan by different methods. Unpublished MSc thesis. Hacettepe University Graduate School of Science and Engineering, Ankara, Türkiye, 80 pp. [In Turkish]
  • Koperska, M.A., Pawcenis, D., Bagniuk, J., Zaitz, M.M., Missori, M., Łojewski, T. and Łojewska, J. 2014. Degradation markers of fibroin in silk through infrared spectroscopy. Polymer Degradation and Stability, 105: 185-196. doi: 10.1016/j.polymdegradstab.2014.04.008
  • Kumar, M.N.V. 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers, 46 (1): 1-27. doi: 10.1016/S1381-5148(00)00038-9
  • Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., Qu, M., Jiang, C. and Yang, Q. 2012. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules, 17 (4): 4604-4611. doi: 10.3390/molecules17044604
  • Madejová, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31 (1): 1-10. doi: 10.1016/S0924-2031(02)00065-6
  • Majtán, J., Bíliková, K., Markovič, O., Gróf, J., Kogan, G. and Šimúth, J. 2007. Isolation and characterization of chitin from bumblebee (Bombus terrestris). International Journal of Biological Macromolecules, 40 (3): 237-241. doi: 10.1016/j.ijbiomac.2006.07.010
  • Montroni, D., Zhang, X., Leonard, J., Kaya, M., Amemiya, C., Falini, G. and Rolandi, M. 2019. Structural characterization of the buccal mass of Ariolimax californicus (Gastropoda; Stylommatophora). PloS One, 14 (8): e0212249. doi: 10.1371/journal.pone.0212249
  • Nazeruddin, G.M., Prasad, N.R., Waghmare, S.R., Garadkar, K.M. and Mulla, I.S. 2014. Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. Journal of Alloys and Compounds, 583: 272-277. doi: 10.1016/j.jallcom.2013.07.111
  • Niu, X., Zhang, W., Huang, Y., Wang, L., Li, Z. and Sun, W. 2020. An electrochemical sensing platform amplified with a Au@Ag nanoparticle-decorated three-dimensional N-doped graphene aerogel for ultrasensitive determination of baicalein. New Journal of Chemistry, 44 (37): 15975-15982. doi: 10.1039/D0NJ03827J
  • Nimmen, E.V., Clerck, K.D., Verschuren, J., Gellynck, K., Gheysens, T., Mertens, J. and Langenhove, L.V. 2008. FT-IR spectroscopy of spider and silkworm silks Part I. Different sampling techniques. Vibrational Spectroscopy, 46 (1): 63-68. doi: 10.1016/j.vibspec.2007.10.003
  • Paulino, A.T., Simionato, J.I., Garcia, J.C. and Nozaki, J. 2006. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate polymers, 64 (1): 98-103. doi: 10.1016/j.carbpol.2005.10.032
  • Poudel, M.B. and Kim, A.A. 2023. Silver nanoparticles decorated TiO2 nanoflakes for antibacterial properties. Inorganic Chemistry Communications, 152: 110675. doi: 10.1016/j.inoche.2023.110675
  • Premkumar, J., Sudhakar, T., Dhakal, A., Shrestha, J.B., Krishnakumar, S. and Balashanmugam, P. 2018. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatalysis and Agricultural Biotechnology 15: 311-316. doi: 10.1016/j.bcab.2018.06.005
  • Sajomsang, W. and Gonil, P. 2010. Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering, 30 (3): 357-363. doi: 10.1016/j.msec.2009.11.014
  • Seyyar, F. and Demir, H. 2020. Extraction and physicochemical characterization of chitin from Phalangium opilio Linnaeus, 1758 (Arachnida: Opiliones). Acta Biologica Turcica, 33 (4): 258-263.
  • Shao, Z., Vollrath, F., Sirichaisit J. and Young, R.J. 1999. Analysis of spider silk in native and supercontracted states using Raman spectroscopy. Polymer, 40 (10): 2493-2500. doi: 10.1016/S0032-3861(98)00475-3
  • Sharma, V.K., Yngard, R.A. and Lin, Y. 2009. Silver nanoparticles, Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145 (1-2): 83-96. doi: 10.1016/j.cis.2008.09.002
  • Slavin, Y.N., Asnis, J., Häfeli, U.O. and Bach, H. 2017. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15: 65. doi: 10.1186/s12951-017-0308-z
  • Sobotnik, J., Kudlikova-Krizkova, I., Vancova, M., Munzbergova, Z. and Hubert, J. 2008. Chitin in the peritrophic membrane of Acarus siro (Acari: Acaridae) as a target for novel acaricides. Journal of Economic Entomology, 101 (3): 1028-1033. doi: 10.1093/jee/101.3.1028
  • Valgas, C., de Souza, S.M., Smânia, E.F.A and Smânia Jr, A. 2007. Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38: 369-380. doi: 0.1590/S1517-83822007000200034
  • Walter, D.E. and Krantz, G.W. 2009. Collecting, rearing and preparing specimens. In: A manual of acarology. Third edition. Krantz, G.W. and Walter, D.E. (Eds). Texas Tech University Press, Texas, USA, 83-96.
  • Xu, L., Zhang, D., Ming, L., Jiao, Y. and Chen, F. 2014. Synergistic effect of interfacial lattice Ag+ and Ag0 clusters in enhancing the photocatalytic performance of TiO2. Physical Chemistry Chemical Physics, 16 (36): 19358-19364. doi: 10.1039/C4CP02658F
  • Yen, M.-T. and Mau, J.-L. 2007. Selected physical properties of chitin prepared from shiitake stipes. LWT-Food Science and Technology, 40 (3): 558-563. doi: 10.1016/j.lwt.2005.10.008
  • Yen, M.-T., Yang, J.-H. and Mau, J.-L. 2009. Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75 (1): 15-21. doi: 10.1016/j.carbpol.2008.06.006
  • Zhang, M., Haga, A., Sekiguchi, H. and Hirano, S. 2000. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. International Journal of Biological Macromolecules, 27 (1): 99-105. doi: 10.1016/S0141-8130(99)00123-3
Acarological Studies-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2019
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Eustigmaeus absens (Acari: Stigmaeidae) türünden elde edilen kitin ve Ag-dekore edilmiş kitin nanokompozit: İzolasyonu, karakterizasyonu ve antibakteriyel aktivitesi

Şifanur UĞURLU, Bülent ÇAĞLAR, Tuğrul DORUK, Salih DOĞAN

First record of the genus Rhinothrombium (Trombidiformes: Tanaupodidae) from Türkiye: Rhinothrombium nemoricola (Berlese)

Alper TORUNLAR, Evren BUĞA, Sevgi SEVSAY

Development and life table parameters of the Phytoseius corniger Wainstein (Acari: Phytoseiidae) feeding on the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions

Leili BAGHLANI, Hussein SADEGHİ NAMAGHİ, Lida FEKRAT

New records of feather mites (Sarcoptiformes: Astigmata) from some birds in Türkiye

Gökhan EREN, Mehmet ÖZTÜRK, Sergey V. MIRONOV, Hatice Özlem NİSBET, Mustafa AÇICI

Amblyomma scutatum Neumann, 1899 (Ixodida: Ixodidae) parasitizing Ctenosaura similis (Gray, 1831) (Squamata: Iguanidae) in Costa Rica

Ana JİMENEZ-ROCHA, Sergio BERMUDEZ CASTILLERO, Anthony SOLÓRZANO, Ernesto ROJAS SANCHEZ, César PÉREZ, Gaby DOLZ

Morphological and molecular identification of the hard ticks parasitizing Tremarctos ornatus (Carnivora: Ursidae) from paramo of Ecuador

Sandra ENRÍQUEZ, María L. FÉLİX, Armando CASTELLANOS, Sergio BERMUDEZ CASTILLERO, José M. VENZAL

A massive infestation of the long-legged buzzard, Buteo rufinus (Cretzschmar), by Hyalomma marginatum Koch (Acari: Ixodidae) ticks in Türkiye

Ayşe SARI, Emine Hesna KANDIR, Bilal DİK, Adem KESKİN

Zihinsel engelli bireylerde Demodex akar (Acari: Demodecidae) prevalansı ve yoğunluğu

Erhan ZEYTUN, Sibel DOĞAN, Engin DOĞANER

Aculus taihangensis (Acari: Prostigmata: Eriophyidae), a potential biological control agent identified from the highly invasive pest plant, tree of heaven, in Türkiye

Sebahat K. OZMAN-SULLIVAN, Gregory T. SULLIVAN, Philipp E. CHETVERIKOV, Esma KAPLAN