Forest Fire Analysis with Sentinel-2 Satellite Imagery: The Case of Mati (Greece) in 2018

Forest Fire Analysis with Sentinel-2 Satellite Imagery: The Case of Mati (Greece) in 2018

Due to the damage they cause to the environment, forest fires have an important place among the disasters that occur around world. In recent years, forest fires have increased in frequency, size and intensity, especially in Mediterranean countries. Preventive measures should be taken and risk reduction should be implemented so that natural or man-made risks do not turn into a catastrophe disaster. After a disaster commences, the implementation of evacuation plans for the settlement, when necessary, is of great importance in this context. One of these forest fires started on July 23, 2018 in the popular holiday resort of Mati in Greece. Mati located within the borders of the Attica region and 29km east of the Athens, was examined within the scope of this study. The forest fire that took place in the said regions affected a very large area and the fires caused the death of 103 people and the destruction of approximately 4,000 houses, including thousands of vehicles. In the study, data processing and evaluation using Sentinel-2 satellite images from the Copernicus program of the European Space Agency (ESA), SNAP software, an open source software developed by ESA and the ArcMap program were used for subsequent statistical calculations. As a result, it was determined how much the area was burned with the help of Sentinel-2 satellites and a study was carried out on the mapping of the affected areas. In addition, the relationship between disaster risk reduction activities has been examined.

___

  • [1] UNDHA (United Nations Department of Humanitarian Affairs). 1992. Internationally agreed glossary of basic terms related to disaster management. Geneva: UNDHA.
  • [2] A. Teodoro and A. Amaral, “A statistical and spatial analysis of Portuguese forest fires in summer 2016 considering Landsat 8 and Sentinel 2A data”, Environments, vol. 6, no.3, pp. 36, 2019, doi: https://doi.org/10.1023/A:1009752403216
  • [3] M. C. Rulli and R. Rosso, “Hydrologic response of upland catchments to wildfires”, Advances in Water Resources, vol. 30, no. 10, pp. 2072-2086, 2017, doi: https://doi.org/10.1016/j.advwatres.2006.10.012
  • [4] İ. H. Saylan and R. Çömert, "Sentinel-2A ürünlerinin yanmış orman alanlarının haritalanmasındaki başarının araştırılması", Türkiye Uzaktan Algılama Dergisi, vol. 1, no. 1, pp. 8-15, Dec. 2019.
  • [5] M. Yavuz and B. Sağlam, “Uzaktan Algılama ve Coğrafi Bilgi Sistemlerinin Orman Yangınlarında Kullanılması”, Ulusal Akdeniz Orman ve Çevre Sempozyumu, KSÜ Mühendislik Bil. Der., vol. special, pp. 235-242, 2012.
  • [6] A. Sabuncu and H. Özener, "Uzaktan Algılama Teknikleri ile Yanmış Alanların Tespiti: İzmir Seferihisar Orman Yangını Örneği", Doğal Afetler ve Çevre Dergisi, vol. 5, no. 2, pp. 317-326, Tem. 2019, doi:10.21324/dacd.511688
  • [7] A. da P. Pacheco, J. A. da S. Junior, A. M. Ruiz-Armenteros, and R. F. F. Henriques, “Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery”, Remote Sensing, vol. 13, no. 7, p. 1345, Apr. 2021, doi: 10.3390/rs13071345.
  • [8] https://sentinel.esa.int/web/sentinel/missions (Erişim Tarihi: 2022). (Accessed on 12 November 2022).
  • [9] Z. Malenovský, H. Rott, J. Cihlar, M. E. Schaepman, G. García-Santos, R. Fernandes, and M. Berger, “Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land”, Remote Sensing of environment, vol.120, pp. 91-101, May 2012, doi: https://doi.org/10.1016/j.rse.2011.09.026
  • [10] https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/mission-objectives (Accessed on 12 November 2022).
  • [11] S. Xulu, N. Mbatha, and K. Peerbhay, “Burned Area Mapping over the Southern Cape Forestry Region, South Africa Using Sentinel Data within GEE Cloud Platform”, ISPRS International Journal of Geo-Information, vol. 10, no. 8, p. 511, Jul. 2021, doi: 10.3390/ijgi10080511.
  • [12] A. Verhegghen et al., “The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests”, Remote Sensing, vol. 8, no. 12, p. 986, Nov. 2016, doi: 10.3390/rs8120986.
  • [13] D. Stavrakoudis, T. Katagis, C. Minakou and I. Z. Gitas, (2019, June) “Towards a fully automatic processing chain for operationally mapping burned areas countrywide exploiting Sentinel-2 imagery”, In Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), International Society for Optics and Photonics, vol. 11174, p. 1117405, June.2019, doi: https://doi.org/10.1117/12.2535816.
  • [14] L. Pádua, N. Guimarães, T. Adão, A. Sousa, E. Peres, and J. J. Sousa, “Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery”, ISPRS International Journal of Geo-Information, vol. 9, no. 4, p. 225, Apr. 2020, doi: 10.3390/ijgi9040225.
  • [15] N. Puletti, F. Chianucci and C. Castaldi “Use of Sentinel-2 for forest classification in Mediterranean environments”, Ann. Silvic. Res, vol. 42, no. 1, pp. 32-38, 2018, doi: :10.1016/j.rse.2011.09.026
  • [16] F. Filipponi, “Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: A Case Study on the 2017 Italy Wildfires”, Remote Sensing, vol. 11, no. 6, p. 622, Mar. 2019, doi: 10.3390/rs11060622.
  • [17] H. Youn and J. Jeong, “Detection of forest fire and NBR mis-classified pixel using multi-temporal Sentinel-2A images”, Korean Journal of Remote Sensing, vol. 35, no. 6_2, pp.1107-1115, 2019, doi: https://doi.org/10.7780/kjrs.2019.35.6.2.7
  • [18] E. Roteta, A. Bastarrika, M. Padilla, T. Storm and E. J. R. S. O. Chuvieco, “Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa”, Remote sensing of environment, vol. 222, pp.1-17, 2019, doi: https://doi.org/10.1016/j.rse.2018.12.011
  • [19] T. Dindaroglu, E. Babur, T. Yakupoglu, J. Rodrigo-Comino and A. Cerda, A. “Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest”, Fire Safety Journal, vol.122, pp.103318, June 2021, doi: https://doi.org/10.1016/j.firesaf.2021.103318
  • [20] A. Teodoro and A. Amaral, “A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data”, Environments, vol. 6, no. 3, p. 36, Mar. 2019, doi: 10.3390/environments6030036.
  • [21] O. S. Yılmaz, D. E. Akyüz, M. A. Akgül, M. Aksel, M. Dikici, Y. Oral, H. Aksoy and F. B. Şanlı, “Uzaktan Algılama ve Coğrafi Bilgi Sistemleri ile Orman Yangını Şiddeti Haritalarının Üretilmesi ve Eğimlere Göre Analizi: Bodrum; Orman Yangını Örneği”, TMMOB Afet Sempozyumu, Ankara, pp.865-874, Apr. 2022.
  • [22] R. Llorens, J. A. Sobrino, C. Fernández, J. M. Fernández-Alonso and J. A. Vega, “A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data”, Application to the October 2017 fires in the Iberian Peninsula, International Journal of Applied Earth Observation and Geoinformation, vol. 95, no.102243, March 2021, doi: https://doi.org/10.1016/j.jag.2020.102243
  • [23] 5902 Sayılı Afet ve Acil Durum Yönetimi Başkanlığının Teşkilat ve Görevleri Hakkında Kanun. https://www.mevzuat.gov.tr/mevzuatmetin/1.5.5902.pdf (Accessed on 11 November 2022).
  • [24] https://uclgmewa.org/uploads/file/748e86d91ae4409e9188794ddb6c004d/Sendai_TR.pdf (Accessed on 18 November 2022).
  • [25] İ. Macit , "Bütünleşik Afet Yönetiminde Sendai Çerçeve Eylem Planının Beklenen Etkisi", Doğal Afetler ve Çevre Dergisi, vol. 5, no. 1, pp. 175-186, Jan. 2019, doi:10.21324/dacd.421564
  • [26] H. Smith, “In my nightmares I’m always in the sea a year on from the Greek fires”, The Guardian, 2019. https://www.wikiwand.com/en/2018_Attica_wildfires (Accessed on 14 November 2022).
  • [27] https://sentinel.esa.int/web/sentinel/missions/sentinel-2/satellite-description/orbit (Accessed on 12 November 2022).
  • [28] Suhet, (2013) Sentinel-2 User Handbook 1: 9, https://sentinel.esa.int/ documents/247904/685211/ sentinel-2_user_handbook (Accessed on 10 November 2022).
  • [29] https://sentinel.esa.int/web/sentinel/missions/sentinel-2/satellite-description(Accessed on 12 November 2022)
  • [30] R. Gibson, T. Danaher, W. Hehir and L. Collins, “A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest”, Remote Sensing of Environment, Vol. 240, no.111702, Apr. 2020, doi: https://doi.org/10.1016/j.rse.2020.111702
  • [31] D. P. Roy, L. Boschetti and S. G. Trigg, “Remote sensing of fire severity: assessing the performance of the normalized burn ratio”, IEEE Geoscience and Remote Sensing Letters, vol.3, no.1, pp. 112-116, Jan. 2006, doi: 10.1109/LGRS.2005.858485
  • [32] S. Parks, G. Dillon, and C. Miller, “A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio,” Remote Sensing, vol. 6, no. 3, pp. 1827–1844, Feb. 2014, doi: 10.3390/rs6031827.
  • [33] A. Sabuncu ve H. Özener , "Uzaktan Algılama Teknikleri ile Yanmış Alanların Tespiti: İzmir Seferihisar Orman Yangını Örneği", Doğal Afetler ve Çevre Dergisi, c. 5, sayı. 2, ss. 317-326, Tem. 2019, doi:10.21324/dacd.511688
  • [34] European Union Emergency Response Coordination Centre (ERCC). DG ECHO Daily Map, Greece Forest Fires Situation 26/07/2018. https://reliefweb.int/sites/reliefweb.int/files/resources/ECDM_20180726_Greece_ Forest-Fires.pdf, (Accessed on 20 November 2022).
  • [35] D. Arisanty, M. Feindhi Ramadhan, P. Angriani, M. Muhaimin, A. Nur Saputra, K. Puji Hastuti and D. Rosadi, “Utilizing sentinel-2 data for mapping burned areas in banjarbaru wetlands, South Kalimantan province”, International Journal of Forestry Research, vol. 2022, Oct. 2022, doi: https://doi.org/10.1155/2022/7936392
  • [36] B. Kurnaz, C. Bayik and S. Abdikan, “Forest fire area detection by using Landsat-8 and Sentinel-2 satellite images: A case study in Mugla, Turkey”, May 2020, doi: https://doi.org/10.21203/rs.3.rs-26787/v1
  • [37] W. De Simone, M. Di Musciano, V. Di Cecco, G. Ferella and A. R. Frattaroli, “The potentiality of Sentinel-2 to assess the effect of fire events on Mediterranean mountain vegetation”, Plant Sociology, vol. 57, no.11, Apr. 2020, doi: doi.org/10.3897/pls2020571/02
  • [38] Y. Uttaruk, T. Rotjanakusol and T. Laosuwan, “Burned Area Evaluation Method for Wildfires in Wildlife Sanctuaries Based on Data from Sentinel-2 Satellite”, Polish Journal of Environmental Studies, vol. 31, no.6, pp. 1-11, 2022, doi: DOI: 10.15244/pjoes/152835
  • [39] F. Ngadze, K. S. Mpakairi, B. Kavhu, H. Ndaimani and M. S. Maremba, “Exploring the utility of Sentinel-2 MSI and Landsat 8 OLI in burned area mapping for a heterogenous savannah landscape”, PLoS One, vol. 15, no. 5, 2020, doi: https://doi.org/10.1371/journal.pone.0232962
  • [40] D. Morresi, R. Marzano, E. Lingua, R. Motta, and M. Garbarino, “Mapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery”, Remote Sensing of Environment, vol. 269, no.112800, Feb. 2022, doi: https://doi.org/10.1016/j.rse.2021.112800
  • [41] S. Gülci , K. Yüksel , S. Gümüş and M. Wing , "Mapping Wildfires Using Sentinel 2 MSI and Landsat 8 Imagery: Spatial Data Generation for Forestry", European Journal of Forest Engineering, vol. 7, no. 2, pp. 57-66, Dec. 2021, doi:10.33904/ejfe.1031090
  • [42] S. Abdikan et al., “Burned Area Detection Using Multi-Sensor SAR, Optical, and Thermal Data in Mediterranean Pine Forest”, Forests, vol. 13, no. 2, p. 347, Feb. 2022, doi: 10.3390/f13020347.