Soğuk Gaz Dinamik Sprey (CGDS) Kaplama Teknolojisi ve Uygulamaları

Termal sprey kaplamalar, hedef bir altlık malzeme üzerine yüksek ısıl ve/veya kinetik enerjiye sahip, erimiş ya da yarı erimiş formdaki toz parçacıkların gönderilmesi yoluyla elde edilmektedir. Günümüzde termal sprey kaplamalar; havacılık ve savunma sektörleri başta olmak üzere otomotiv, enerji, elektronik ve biyomedikal uygulamalar gibi birçok alanda kullanılmaktadır. Uygulandıkları yüzeyler üzerinde aşınma, oksidasyon, korozyon ve yüksek mekaniksel dayanım gibi üstün özelliklerin eldesine imkan veren bu kaplamalar istenilen yüzey özelliklerine göre farklı sprey kaplama yöntemleri kullanılarak uygulanabilmektedir. Yaygın olarak kullanılan hızlı, ekonomik ve verimli bir kaplama üretimine olanak veren plazma sprey kaplamaların yanında yüksek kaliteye sahip kaplama üretimine olanak veren Yüksek Hızlı Oksi-Yakıt Püskürtme (HVOF) kaplamalarda endüstride geniş bir yelpazede kullanım alanı bulmakta ancak kullanılan ekipman ve proses özellikleri yönüyle daha maliyetli bir teknolojiye sahiptir. Son yıllarda, plazma sprey ve HVOF kaplamalara alternatif olarak üstün özelliklere, oksitsiz ve yoğun kaplama yapısına sahip Soğuk Gaz Dinamik Sprey (CGDS) kaplamalar ön plana çıkmaktadır. Bu sistemin 'Soğuk Gaz Dinamik Sprey' olarak isimlendirilmesinin sebebi, göreceli olarak nozuldaki mevcut olan gaz çıkış sıcaklığının diğer yöntemlere göre düşük olmasıdır. Bu çalışmada, araştırmacı ve endüstriyel kullanıcılar için ilgi odağı oluşturan CGDS kaplama teknolojisi ele alınarak açıklanmıştır.

Cold Gas Dynamic Spray (CGDS) Technology and Applications

Thermal spray coatings are obtained by sending powder particles with high heat and/or kinetic energy onto a target substrate material in molten or semi-molten form. Nowadays, thermal spray coatings are used in many areas such as particularly aviation and defense industry and also energy, electronic and biomedical applications. These coatings, which provide superior properties such as wear, oxidation, corrosion and high mechanical strength on the surfaces applied, can be applied using different spray coating methods according to surface properties demanded. In addition to plasma spray coatings which are commonly used and allow a fast, economical and efficient coating production, High Velocity Oxy-Fuel (HVOF) coatings are also widely used due to the fact that they allow high quality coating production. However, HVOF coatings have a technology with high cost due to equipments and process properties used. In recent years, as alternative to plasma spray and HVOF coatings, Cold Gas Dynamic Spray (CGDS) coatings, which have superior properties, oxide-free and dense coating structure, have came into the forefront. The reason of why this system is called as "Cold Gas Dynamic Spray" is that outlet temperature of the gas present in nozzle is relatively lower than that of other methods. In this study, CGDS coating technology and applications, which is the center of interest for researcher and industrial users, were discussed and explained.

___

  • E. Irissou, J.G. Legoux, A.N. Ryabinin, B. Jodoin, C. Moreau, Review on Cold Spray Process and Technology: Part I-Intellectual Property, Journal of Thermal Spray Technology, 17(4), 495-516 (2008).
  • A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V.M. Fomin, Cold Spray Technology, Elsevier Science, ISBN-13: 978-0-08-045155-8 (2007).
  • J.R. Davis, Revised by D.E. Crawmer, Thermal Spray Processes, Handbook of Thermal Spray Technology, ISBN 0- 87170-795-0, ASM International, 54-76 (2004).
  • R. Patrick, “Development of Conventional and Nanocrystalline Bond Coats by Cold Gas Dynamic Spraying for Aerospace Thermal Barrier Coatings”, Ph.D. Thesis, University of Ottowas, Ottowa Ontario Canada, (2010).
  • B. Jodoin, Cold Spray Nozzle Mach Number Limitation, Journal of Thermal Spray Technology, Vol: 11, 496-507 (2001).
  • F. Gartner, T. Sotltenhoff, T. Scmidt, H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, Journal of Thermal Spray Technology, Vol: 15, 223-232 (2006).
  • L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, 2nd Edition, 67-165 (2008).
  • L. Ajdelsztajn, B. Jodoin, G.E. Kim, J.M. Schoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metallurgical and Materials Transactions A, Vol: 36A, 657-666 (2005).
  • R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, S. Sampath, Impact of High Velocity Cold Spray Particles, Journal of Thermal Spray Technology, Vol. 8, 559-564 (1999).
  • K.H. Kim, M. Watanabe, S. Kuroda, Jetting-Out Phenomenon Associated with Bonding of Warm-Sprayed Titanium particles onto Steel Substrate, Journal of Thermal Spray Technology, Vol: 18, 490-499 (2009).
  • T. Hussain, D.G. Mccartney, P.H. Shipway, D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, Journal of Thermal Spray Technology, Vol: 18, 364-379 (2008).
  • T. Schmidt, H. Assadi, F. Gartner, H. Richer, T. Stoltenhoff, H. Kreye, T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, Journal of Thermal Spray Technology, Vol: 18, 794-808 (2009).
  • P. Fauchais, G. Montavon, Thermal and cold spray recent developments, Key Engineering Materials, 384,1-59 (2008).
  • KITAMURA J., SATO K., AOKI I., SAKAKI K., TAKAHATA M., SHIMIZU Y., Mechanical Properties of WC/Co coatings prepared by cold spraying, International Thermal Spray Conference, Thermal Spray Crossing Borders, Maastricht - The Netherlands, June 2-4, 1246- 1250, 2008.
  • B. Jodoin, L. Ajdelsztajn, E. Sannsoucy, A. Zuniga, P. Richer, E.J. Lavernia, Effect of Particle Size, Morphology and Hardness on Cold Gas Dynamic Sprayed Aluminium Alloy Coatings, Surface and Coatings Technology, Vol: 201, 3422-3429 (2006).
  • P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying, Surface and Coatings Technology 204, 3962–3974 (2010).
  • L. Ajdelsztajn, A. Zuniga, B. Jodoin, E.J. Lavernia, Cold-Spray Processing of a Nanocrystalline Al-Cu-Mg-Fe-Ni Alloy with Sc, Journal of Thermal Spray Technology, Vol: 15, 184-190 (2006).
  • A.C. Karaoglanli, Termal Bariyer Kaplamalarda Bağ Tabakasının Farklı Yöntemlerle Üretilmesi ve Özelliklere Etkisi, Ph.D. Thesis, Sakarya Üniversitesi, Sakarya, (2012).
  • H. Gutzmann, S. Freese, F. Gartner, T. Klassen, Hamburg, Cold Gas Spraying of Ceramics Using the Example of Titanium Dioxide, International Thermal Spray Conference, Hamburg, September 27-29, 391-396 (2011).
  • J.O. Kliemann, H. Gutzmann, F. Gartner, H. Hubner, C. Borchers, KLASSEN T. Klassen, Formation of Cold-Sprayed Ceramic Titanium Dioxide Layers on Metal Surfaces, Journal of Thermal Spray Technology, Vol: 20, 292-298 (2011). http://www.gordonengland.co.uk/coldspray.htm
  • V.K. Champagne, The cold spray materials deposition process, and Publishing Limited, New York, (2007). applications, Woodhead
  • K.I. Triantou, Ch.I. Sarafoglu, Th. Tsiourva, D.I. Pantelis, D.K. Christoulis, V. Guipont, M. Jeandin, M. Vardavoulias, Case Studies of Cold Sprayed Coatings, Proceedings of the 7th International Conference Coatings in Manufacturing Engineering, Greece, (2008).
  • R. Tapphorn, J. Hennes, H. Gabel, Kinetic Metallization™ -A Repair Process for Damaged IVD-Al Coatings, Mg, and Al Alloy Components, Thermal Spray 2009: Proceedings of the International Thermal Spray
  • Conference, Inovati, Santa Barbara, California, USA, (2009).
  • S. Hartmann, New industrial applications for cold spraying, Thermal Spray 2010: Proceedings of the International Thermal Spray Conference, DVS-ASM, Raffles City, Singapore, (2010).