Lineer Fresnel Reflektör- Fotovoltaik/Termal Sistemin Elektriksel ve Termal Performans Analizi

Bir güneş enerjisi yoğunlaştırıcısı olan lineer Fresnel yansıtıcılarla entegre edilmiş bir fotovoltaik sistem, soğutma amaçlı bir termal sistemle birlikte düşünüldüğünde çok cazip bir enerji üretim sistemi ortaya çıkar. Bu çalışmada yüksek verimli ve son derece dayanıklı monokristal güneş pillerinin kullanıldığı bir fotovoltaik sistem teorik olarak ele alınmaktadır. Ucuz fakat nispeten daha az etkili güneş pilleri önerilmesine karşın, güneş ışığını doğrusal bir Fresnel reflektör sistemi ile yoğunlaştırıp ve fotovoltaik paneli soğutma vasıtasıyla ilaveten ısı enerjisi elde ederek çok iyi bir maliyet-etkin fotovoltaik sistem üretilebileceği gösterilmektedir. Önerilen sistemin elektrik ve termal performansı, nispeten düşük güneş radyasyonu koşulları altında teorik olarak analiz edilmektedir. Verilen iklim koşulları altında, bir soğutma mekanizması entegre edildiğinde sistemden ortalama 228,8 kWh elektrik ve 1229,8 kWh termal enerji elde edilebileceği sonucuna varılmaktadır.

Electrical and Thermal Performance Analysis of a Linear Fresnel Reflector- Photovoltaic/Thermal System

A photovoltaic system integrated with linear Fresnel reflectors constitutes a very attractive energy generation system when combined with a cooling thermal system. In this study, a photovoltaic system using high efficiency and extremely durable monocrystalline solar cells is theoretically discussed. Although cheap but relatively less effective solar cells have been proposed, it has been shown that a very good cost-effective photovoltaic system can be produced by concentrating sunlight with a linear Fresnel reflector system and obtaining additional heat energy by cooling the photovoltaic panel. The electrical and thermal performance of the proposed system is theoretically analyzed under relatively low solar radiation conditions. Under the given climatic conditions and the average instantaneous solar radiation of 559 W/m2 at the location, it is concluded that when a cooling mechanism is implemented, an average of 228.8 kWh of electricity and 1229.8 kWh of thermal energy can be obtained per month from the system.

___

  • M. Ram, M.Child, A.Aghahosseini, D.Bogdanov, A.Poleva, Comparing electricity production costs of renewables to fossil and nuclear power plants in G20 countries, Greenpeace, 2017.
  • Technology Roadmaps Solar photovoltaic energy, https://www.iea.org/publications/freepublications/publication/pv_roadmap.pdf, (accessed 16/03/2020).
  • H. S. Rauschenbach, Solar Cell Array Design Handbook, Litton Educational Publishing, Inc., NY, 1980.
  • Omar Z. Sharaf, Mehmet F. Orhan, Concentrated photovoltaic thermal (CPVT) solar collector systems:Part I – Fundamentals, design considerations and current technologies, Ren. and Sust. Ener. Rev., 2015, 50, 1500–1565.
  • Heimsath A., Cuevas F., Hofer A, Nitz P., Platzer W. J., Linear Fresnel Collector Receiver: Heat Loss and Temperatures, Energy Procedia, 49, 386-397 (2014).
  • Abbas R., Muñoz-Antón J., Valdés M., Martínez-Val J.M., High concentration linear Fresnel reflectors, Energy Conv. and Man., 72, 60-68 (2013).
  • Montes M.J., Rubbia C, Abbas R., Martínez-Valc J.M., A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power, Energy, 73, 192-203 (2014).
  • Luque LA, Andreev VM. Concentrator photovoltaics. Berlin: Springer; 2007.
  • Otterbein R, Facinelli WA, Evans DL. Combined photovoltaic/thermal system studies. NASA STI; 1978.
  • L. Zhang, D. Jing, L. Zhao, J. Wei, and L. Guo, Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review, Int. J. of Photoenergy, 2012, Special Issue, 8 pages.
  • R. Daneshazarian, E. Cuce, P. M. Cuce, F. Sher, Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications, Ren. and Sust. Energy Rev., 2018, 81, 473–492.
  • N. Gakkhar, M. K. Soni, S. Jakhar, Experimental and theoretical analysis of hybrid concentrated photovoltaic/thermal system using parabolic trough collector, App. Thermal Eng., 2020, 171, 115069.
  • M. George, A.K. Pandey, N. A. Rahim, V.V. Tyagi, S. Shahabuddin, R. Saidur, Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications, Ene. Conv. and Man., 2019, 186, 15–41.
  • M. Valizadeh, F. Sarhaddi, M. M. Adeli, Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector, Ren. Energy, 2019, 138, 1028-1041.
  • A. Kasaeian, S. Tabasi, J. Ghaderian, H. Yousefi, A review on parabolic trough/Fresnel based photovoltaic thermal systems, Ren. and Sust. Energy Rev., 2018, 91, 193–204.
  • D. Del Col, M. Bortolato, A. Padovan, M. Quaggia, Experimental and numerical study of a parabolic trough linear CPVT system, Energy Procedia, 2014, 57, 255 – 264.
  • C. Renno, F. Petito, Modelling of a linear focus concentrating photovoltaic and thermal system for different load scenarios of a residential user, Ene. Conv. and Man., 2019, 188, 214–229.
  • R. Tripathia, G.N.Tiwari, T.S.Bhattia, V.K.Dwivedi, 2-E (Energy-Exergy) for partially covered concentrated photovoltaic thermal (PVT) collector, Energy Procedia, 2017, 142, 616-623.
  • A.Muthu Manokar, D. P. Winston, M.Vimala, Performance Analysis of Parabolic trough Concentrating Photovoltaic Thermal System, Procedia Tech., 2014, 24, 485 – 491.
  • B. K. Widyolar, M. Abdelhamid, L. Jiang, R. Winston, E.Yablonovitch, G. Scranton, D. Cygan, H. Abbasi, A. Kozlov, Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector, Ren. Energy, 2017, 101, 1379-1389.
  • M. Vivar, V. Everett, M. Fuentes, A. Blakers, A. Tanner, P. Le Lievre and M. Greaves, Initial field performance of a hybrid CPV-T microconcentrator system, Prog. Photovolt: Res. Appl., 2013, 21, 1659 – 1671.
  • F. Yang, H. Wang, X. Zhang, W. Tian, Y. Hua, T. Dong, Design and experimental study of a cost-effective low concentrating photovoltaic/thermal system, Solar Energy 160 (2018) 289–296.
  • B. Du, E. Hu, M. Kolhe, Performance analysis of water cooled concentrated photovoltaic (CPV) system, Ren. and Sust. Energy Rev., 2012, 16, 6732–6736.
  • H. Zhang, L. Zhu, Y. Wang, Y. Sun, “Design and Simulation of a Linear Flat Mirror Concentrator”, Solar2010, the 48th AuSES Annual Conference, Canberra, ACT, Australia, 1-3 December 2010. Swanson RM, Beckwith S, Crane R, et al., Point-contact silicon solar cells, IEEE Transactions on Electron Devices 31, pp.661 (1984).
  • J.I. Rosell, X. Vallverdu, M.A. Lechon, M. Ibanez, “Design and simulation of a low concentrating photovoltaic / thermal system”, Ene. Conv. and Man., 46, 3034–3046, 2005. Salas V., National Survey Report of PV Power Applications in Spain 2008, IEA Co-operative Programme on Photovoltaic Power Systems, Universidad Carlos III de Madrid (2009).
  • Y. Liu, P. Hu, Q. Zhang, Z. Chen, “Thermodynamic and optical analysis for a CPV/T hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels”, Solar Energy, 103, 191–199, 2014.
  • R.M. Swanson, S. Beckwith, R. Crane, “Point-contact silicon solar cells”, IEEE Transactions on Electron Devices 31, pp.661, 1984.
  • V. Salas, “National Survey Report of PV Power Applications in Spain 2008, IEA Co-operative Programme on Photovoltaic Power Systems”, Universidad Carlos III de Madrid, 2009.
  • Green, MA, Hishikawa, Y, Dunlop, ED, et al. Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl. 2019; 27: 3– 12.
  • Solar Energy Potential Atlas in Turkey. ww.eie.gov.tr /MyCalculator /Default.aspx, (accessed 16/03/2020).
  • Editors: I. Dincer, C. O. Colpan, O. Kizilkan Exergetic, Energetic and Environmental Dimensions 1st Edition, Academic Press, 2018, London, UK.
  • Areva Power's concentrated solar power, http://helioscsp.com/reliance-powers-concentrated-solar-power-csp-plant-to-be-commissioned-on-october/, (accessed 16/03/2020).
  • S.S. Mathur, T.C. Kandpal, B.S. Negi, Optical Design and Concentration Characteristics of Linear Fresnel Reflector Solar Concentrators-II. Mirror Elements of Equal Width, Energy Convers. Mgmt., 31:3, 221-232 (1991).
  • Anolux-MIRO-SILVER, http://anomet.com/reflective-aluminum, (accesed 16/03/2020)
  • Sunpower X-Series Solar Panels, https://us.sunpower.com/sites/default/files/sunpower-x-series-commercial-solar-panels-x21-470-com-datasheet-524935-revb.pdf (accessed 16/03/2020).
  • W.P. Mulligan, D.H. Rose, M.J. Cudzinovic, D.M. De Ceuster, K.R. McIntosh, D.D. Smith, and R.M. Swanson, Manufacture of Solar Cells with 21% Efficiency, https://tayloredge.com/reference/Electronics/Photonics/HighEfficiencySolarCells.pdf, (accessed 16/03/2020).
  • Firat C., Beyene A., Comparison of direct and indirect PV power output using filters, lens, and fiber transport, Energy, 41:1, 271-77 (2012).
  • NOAA Solar Calculator, https://www.esrl.noaa.gov/gmd/grad/solcalc/, (accessed 16/03/2020).
  • S.Fakouriyan, Y.Saboohi, A.Fathi, Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production, Renewable Energy, 2019, 134, 1362-1368.
  • S.Karellas, T.C.Roumpedakis, N.Tzouganatos, K.Braimakis, Solar Cooling Technologies, CRC Press, 2019 by Taylor & Francis Group, LLC, Sound Parkway NW.
  • Omar Z. Sharaf, Mehmet F. Orhan, Concentrated photovoltaic thermal (CPVT) solar collector systems:Part I – Fundamentals, design considerations and current technologies, Ren. and Sust. Ener. Rev., 2015, 50, 1500–1565.
  • Omar Z. Sharaf, Mehmet F. Orhan, Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II Implemented systems, performance assessment, and future directions, Ren. and Sust. Ener. Rev., 2015, 50, 1566–1633.
  • A.Hasan, J.Sarwar, A.H.Shah, Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities, Ren. and Sust. Ener. Rev., 2018, 94, 835–852.
  • A.Aldossary, S.Mahmoud, R.AL-Dadah, Technical feasibility study of passive and active cooling for concentrator PV in harsh environment, App. Thermal Eng., 2016, 100, 490–500.
  • Z.Xu, C.Kleinstreuer, Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating, Ener. Conv. and Mng., 2014, 87, 504–512.
  • B.Du, E.Hu, M.Kolhe, Performance analysis of water cooled concentrated photovoltaic (CPV) system, Ren. and Sust. Ener. Rev., 2012, 16, 6732–6736.
  • M. Sabry, Temperature optimization of high concentrated active cooled solar cells, NRIAG J. of Astronomy and Geophysics, 2016, 5, 23–29.
  • L.Idoko, O.Anaya-Lara, .McDonald, Enhancing PV modules efficiency and power output using multi-concept cooling technique, Energy Reports, 2018, 4, 357–369.
  • Z.Peng, M.R. Herfatmanesh, Y.Liu, Cooled solar PV panels for output energy efficiency optimisation, Ener. Conv. and Mng., 2017, 150, 949–955.
  • J.Siecker, K.Kusakana, B.P.Numbi, A review of solar photovoltaic systems cooling technologies, Ren. and Sust. Ener. Rev., 2017, 79, 192–203.
  • H.G.Teo, P.S.Lee, M.N.A.Hawlader, An active cooling system for photovoltaic modules, Applied Energy, 2012, 90, 309–315.
  • H.M.S.Bahaidarah, A.A.B.Baloch, P.Gandhidasan, Uniform cooling of photovoltaic panels: A review, Ren. and Sust. Ener. Rev., 2016, 57, 1520–1544.
  • I.Ceylan, A.E.Gürel, H.Demircan, B.Aksu, Cooling of a photovoltaic module with temperature controlled solar collector, Energy and Buildings 2014,72, 96–101.
  • N.Gilmore, V.Timchenko, C.Menictas, Microchannel cooling of concentrator photovoltaics: A review, Ren. and Sust. Ener. Rev., 2018, 90, 1041–1059.
  • S.Armstrong, W.G.Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions, App. Thermal Eng., 2010, 30, 1488-1495.
  • Y. Amanlou, T. T. Hashjin, B. Ghobadian, G. Najafi, “Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate”, App. Thermal Eng., 141, 413-421, 2018.