Li-O2 Piller için α-MnO2/Grafen/KNT Nanokompozit Elektrotlarının Üretimi ve Karakterizasyonu

Bu çalışmada Li-O2 pilleri için elektrot malzemesi α-MnO2/Grafen/KNT nanokompozitleri üretilmiş ve karakterize edilmiştir. Grafen Hummer metodu ile üretilmiş ve tabakalar arası boşluk yapıcı olarak karbon nano tüp ilavesi yapılmıştır. α-MnO2 nano çubuklar sentezlenerek α-MnO2/Grafen/KNT nanokompozitleri vakum filtrasyon yöntemi ile kağıt halinde elektrot olarak üretilmiştir. Üç farklı oranda ilave edilen α-MnO2 nano çubukları ile elektrotların yapısal karakterizasyonu FESEM, XRD kullanılarak ve elektrokimyasal karakterizasyonu da ECC-hava test hücreleri ile yapılmıştır. 

Production and Characterization of α-MnO2/Graphene/CNT Nanocomposite Electrodes for Li-O2 Batteries

In this study, of α-MnO2/Graphene/CNT nanocomposites were produced and characterized as electrode for Li-O2 batteries. Graphene was produced with Hummer method and carbon nano tubes were added to graphene as spacers between layers. α-MnO2nanorods were synthesized and α-MnO2/Graphene/CNT nanocomposites were fabricated by vacuum filtration technique as a paper electrode. α-MnO2nanorods were added to composite at three different rates and electrodes were characterized by FESEM and XRD. The electrochemical characterization was carried out in ECC-air test cells.  

___

  • [1] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, and P. Mustarelli, “Recent advances in the development of Li-air batteries,” J. Power Sources, vol. 220, pp. 253–263, 2012.
  • [2] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: Present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015.
  • [3] M. J. Song and M. W. Shin, “Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery,” Appl. Surf. Sci., vol. 320, pp. 435–440, 2014.
  • [4] A. Kraytsberg and Y. Ein-Eli, “Review on Li-air batteries - Opportunities, limitations and perspective,” J. Power Sources, vol. 196, no. 3, pp. 886–893, 2011.
  • [5] J. Liu, R. Younesi, T. Gustafsson, K. Edström, and J. Zhu, “Pt/α-MnO2 nanotube: A highly active electrocatalyst for Li-O2 battery,” Nano Energy, vol. 10, pp. 19–27, 2014.
  • [6] W. Xiao, Z. Wang, H. Guo, X. Li, J. Wang, S. Huang, and L. Gan, “Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries,” Appl. Surf. Sci., vol. 266, pp. 148–154, 2013.
  • [7] Y. Wen, C. Huang, L. Wang, and D. Hulicova-Jurcakova, “Heteroatom-doped graphene for electrochemical energy storage,” Chinese Sci. Bull., vol. 59, no. 18, pp. 2102–2121, 2014.
  • [8] G. Gnana kumar, Z. Awan, K. Suk Nahm, and J. Stanley Xavier, “Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells,” Biosens. Bioelectron., vol. 53, pp. 528–534, 2014.
  • [9] H. Zhou, X. Yang, J. Lv, Q. Dang, L. Kang, Z. Lei, Z. Yang, Z. Hao, and Z. H. Liu, “Graphene/MnO2 hybrid film with high capacitive performance,” Electrochim. Acta, vol. 154, pp. 300–307, 2015.
  • [10] Y. Wimalasiri and L. Zou, “Carbon nanotube/graphene composite for enhanced capacitive deionization performance,” Carbon N. Y., vol. 59, pp. 464–471, 2013.
  • [11] L. Zhang, F. Zhang, G. Huang, J. Wang, X. Du, Y. Qin, and L. Wang, “Freestanding MnO2@carbon papers air electrodes for rechargeable Li-O2 batteries,” J. Power Sources, vol. 261, pp. 311–316, 2014.
  • [12] R. S. Kalubarme, C. H. Ahn, and C. J. Park, “Electrochemical characteristics of graphene/manganese oxide composite catalyst for Li-oxygen rechargeable batteries,” Scr. Mater., vol. 68, no. 8, pp. 619–622, 2013.
  • [13] D. A. Tompsett, S. C. Parker, and M. S. Islam, “Surface properties of α-MnO 2 : relevance to catalytic and supercapacitor behaviour,” J. Mater. Chem. A, vol. 2, no. 37, pp. 15509–15518, 2014.