Composition and temperature dependences in Ising-type multisegment nanostructure

In the present study, an Ising-type multisegment nanowire (IMN) with ferromagnetic / non-magnetic segment structure is investigated by means of the effective-field theory (EFT) with correlations. The effects of the composition (p) and temperature (T) on the magnetic hysteresis properties are investigated in detail. The coercive field (HC) and squareness (Mr /MS) of the IMN is also derived from hysteresis loops as a function of p and T. In this system, it was found that the p and T have a significant effect on the magnetic behavior. When the obtained theoretical results compare with some experimental works of nanowire in view of hysteresis behaviors, a very good agreement between them is observed.

Composition and temperature dependences in Ising-type multisegment nanostructure

In the present study, an Ising-type multisegment nanowire (IMN) with ferromagnetic / non-magnetic segment structure is investigated by means of the effective-field theory (EFT) with correlations. The effects of the composition (p) and temperature (T) on the magnetic hysteresis properties are investigated in detail. The coercive field (HC) and squareness (Mr /MS) of the IMN is also derived from hysteresis loops as a function of p and T. In this system, it was found that the p and T have a significant effect on the magnetic behavior. When the obtained theoretical results compare with some experimental works of nanowire in view of hysteresis behaviors, a very good agreement between them is observed.

___

  • [1] R. Ghosh, D. Basak, Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction, Appl Phys Lett, 90 (2007).
  • [2] S.W. Jung, W.I. Park, G.C. Yi, M. Kim, Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures, Adv Mater, 15 (2003) 1358-1361.
  • [3] J.D. Ye, S.L. Gu, S.M. Zhu, S.M. Liu, Y.D. Zheng, R. Zhang, Y. Shi, Fermi-level band filling and band-gap renormalization in Ga-doped ZnO, Appl Phys Lett, 86 (2005).
  • [4] J. Luo, Z.P. Huang, Y.G. Zhao, L. Zhang, J. Zhu, Arrays of heterojunctions of Ag nanowires and amorphous cairbon nanotubes, Adv Mater, 16 (2004) 1512–1515.
  • [5] C. Thelander, T. Martensson, M.T. Bjork, B.J. Ohlsson, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Single-electron transistors in heterostructure nanowires, Appl Phys Lett, 83 (2003) 2052-2054.
  • [6] S. Park, S.W. Chung, C.A. Mirkin, Hybrid organic-inorganic, rod-shaped nanoresistors and diodes, J Am Chem Soc, 126 (2004) 11772-11773.
  • [7] V.S. Leite, W. Figueiredo, Spin-glass surface disorder on the magnetic behaviour of antiferromagnetic small particles, Physica A, 350 (2005) 379-392.
  • [8] T. Kaneyoshi, Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces, Journal of Magnetism and Magnetic Materials, 321 (2009) 3630-3636.
  • [9] M. Saber, I. Lukyanchuk, M. Madani, A. Tabyaoui, A. Ainane, The dielectric properties of the KH2PO4/KD2H2PO4 superlattice, Chinese J Phys, 45 (2007) 58-74.
  • [10] I. Apostolova, J.M. Wesselinowa, Magnetic control of ferroelectric properties in multiferroic BiFeO3 nanoparticles, Solid State Commun, 147 (2008) 94-97.
  • [11] A. Lipinska, C. Simserides, K.N. Trohidou, M. Goryca, P. Kossacki, A. Majhofer, T. Dietl, Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: Interpretation of magneto-optical measurements by Monte Carlo simulations, Physical Review B, 79 (2009).
  • [12] E. Kantar, M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: Effective-field theory approach, Journal of Magnetism and Magnetic Materials, 349 (2014) 165-172.
  • [13] G. Salazar-Alvarez, J. Sort, A. Uheida, M. Muhammed, S. Surinach, M.D. Baro, J. Nogues, Reversible post-synthesis tuning of the superparamagnetic blocking temperature of gamma-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions, J Mater Chem, 17 (2007) 322-328.
  • [14] L. Xi, Z. Wang, Y. Zuo, X.N. Shi, The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7-Co nanoshell by thermal reduction, Nanotechnology, 22 (2011).
  • [15] J.H. Lee, I.N. Lund, E.T. Eisenbraun, R.E. Geer, Silicide-induced multi-wall carbon nanotube growth on silicon nanowires, Nanotechnology, 22 (2011).
  • [16] G.S. Chaubey, V. Nandwana, N. Poudyal, C.B. Rong, J.P. Liu, Synthesis and characterization of bimagnetic bricklike nanoparticles, Chem Mater, 20 (2008) 475-478.
  • [17] L. Wang, K. YuZhang, A. Metrot, P. Bonhomme, M. Troyon, TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires, Thin Solid Films, 288 (1996) 86-89.
  • [18] M. Chen, P.C. Searson, C.L. Chien, Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires, J Appl Phys, 93 (2003) 8253-8255.
  • [19] L. Clime, S.Y. Zhao, P. Chen, F. Normandin, H. Roberge, T. Veres, The interaction field in arrays of ferromagnetic barcode nanowires, Nanotechnology, 18 (2007).
  • [20] Z.X. Song, Y.J. Xie, S.W. Yao, H.Z. Wang, W.G. Zhang, Z.Y. Tang, Microstructure and magnetic properties of electrodeposited Co/Cu multilayer nanowire arrays, Mater Lett, 65 (2011) 1562-1564.
  • [21] L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Giant Magnetoresistance in Magnetic Multilayered Nanowires, Appl Phys Lett, 65 (1994) 2484-2486.
  • [22] K. Liu, K. Nagodawithana, P.C. Searson, C.L. Chien, Perpendicular Giant Magnetoresistance of Multilayered Co/Cu Nanowires, Physical Review B, 51 (1995) 7381-7384.
  • [23] R. Sharif, X.Q. Zhang, M.K. Rahman, S. Shamaila, J.Y. Chen, X.F. Han, Y.K. Kim, Fabrication and Magnetization Reversal Processes for Co/Cu Multilayer Nanowires, Ieee T Magn, 45 (2009) 4033-4036.
  • [24] J.U. Cho, J.H. Min, S.P. Ko, J.Y. Soh, Y.K. Kim, J.H. Wu, S.H. Choi, Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires, J Appl Phys, 99 (2006).
  • [25] S. Dubois, E. Chassaing, J.L. Duvail, L. Piraux, M.G. Waals, Preparation and characterization of electrodeposited Fe and Fe/Cu nanowires, J Chim Phys Pcb, 96 (1999) 1316-1331.
  • [26] K.Y. Kok, C.M. Hangarter, B. Goldsmith, I.K. Ng, N.B. Saidin, N.V. Myung, Synthesis and characterization of electrodeposited permalloy (Ni80Fe20)/Cu multilayered nanowires, Journal of Magnetism and Magnetic Materials, 322 (2010) 3876-3881.
  • [27] X.T. Tang, G.C. Wang, M. Shima, Superparamagnetic behavior in ultrathin CoNi layers of electrodeposited CoNi/Cu multilayer nanowires, J Appl Phys, 99 (2006).
  • [28] X.T. Tang, G.C. Wang, M. Shima, Layer thickness dependence of CPP giant magnetoresistance in individual CoNi/Cu multilayer nanowires grown by electrodeposition, Physical Review B, 75 (2007).
  • [29] P. Shakya, B. Cox, D. Davis, Giant Magnetoresistance and Coercivity of electrodeposited multilayered FeCoNi/Cu and CrFeCoNi/Cu, Journal of Magnetism and Magnetic Materials, 324 (2012) 453-459.
  • [30] J.J. Park, M. Reddy, C. Mudivarthi, P.R. Downey, B.J.H. Stadler, A.B. Flatau, Characterization of the magnetic properties of multilayer magnetostrictive iron-gallium nanowires, J Appl Phys, 107 (2010).
  • [31] Y. Peng, T. Cullis, G. Mobus, X. Xu, B. Inkson, Nanotechnology 18 (2007) 485704. Y. Peng, T. Cullis, G. Mobus, X.J. Xu, B. Inkson, Nanoscale characterization of CoPt/Pt multilayer nanowires, Nanotechnology, 18 (2007).
  • [32] H.P. Liang, Y.G. Guo, J.S. Hu, C.F. Zhu, L.J. Wan, C.L. Bai, Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio, Inorg Chem, 44 (2005) 3013-3015.
  • [33] P. Panigrahi, R. Pati, Tuning the ferromagnetism of one-dimensional Fe/Pt/Fe multilayer barcode nanowires via the barcode layer effect, Physical Review B, 76 (2007).
  • [34] M. Elawayeb, Y. Peng, K.J. Briston, B.J. Inkson, Electrical properties of individual NiFe/Pt multilayer nanowires measured in situ in a scanning electron microscope, J Appl Phys, 111 (2012).
  • [35] S. Valizadeh, L. Hultman, J.M. George, P. Leisner, Template synthesis of Au/Co multilayered nanowires by electrochemical deposition, Adv Funct Mater, 12 (2002) 766-772.
  • [36] K. Qi, X.H. Li, H. Zhang, L. Wang, D.S. Xue, H.L. Zhang, B.F. Zhou, N.J. Mellors, Y. Peng, Nanoscale characterization and magnetic property of NiCoCu/Cu multilayer nanowires, Nanotechnology, 23 (2012).
  • [37] F. Nasirpouri, Tunable Distribution of Magnetic Nanodiscs in an Array of Electrodeposited Multilayered Nanowires, Ieee T Magn, 47 (2011) 2015-2021.
  • [38] M.Y. Rafique, L.Q. Pan, A. Farid, From nano-dendrite to nano-sphere of Co100-xNix alloy: Composition dependent morphology, structure and magnetic properties, J Alloy Compd, 656 (2016) 443-451.
  • [39] V. Vega, T. Bohnert, S. Martens, M. Waleczek, J.M. Montero-Moreno, D. Gorlitz, V.M. Prida, K. Nielsch, Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes, Nanotechnology, 23 (2012).
  • [40] Sirisangsawang, P., Rattanasakulthong, W., Pinitsoontorn, S. (2012). Composition dependence of structural, morphological and magnetic properties of Co (FCC)-Cu granular films. International Journal of Physical Sciences,7(46), 6044-6052.
  • [41] Lin, X., Ji, G., Gao, T., Nie, J., & Du, Y. (2012). Magnetic properties of Co–Cu nanowire arrays fabricated in different conditions by SC electrodeposition. Solid State Communications, 152(16), 1585-1589.
  • [42] Bran, C., Palmero, E. M., del Real, R. P., Vazquez, M. (2014). CoFeCu electroplated nanowire arrays: Role of composition and annealing on structure and magnetic properties. physica status solidi (a), 211(5), 1076-1082.
  • [43] Yang, H., Zeng, M., Yu, R. (2014). Magnetic properties of the NixCo 1− x/Cu multilayer nanowires. Materials Research Bulletin, 57, 249-253.
  • [44] N. Zaim, A. Zaim, A., M. Kerouad, Monte Carlo study of the random magnetic field effect on the phase diagrams of a spin-1 cylindrical nanowire, Journal of Alloys and Compounds, 663 (2016) 516-523.
  • [45] M. Keskin, N. Sarli, B. Deviren, Hysteresis behaviors in a cylindrical Ising nanowire, Solid State Commun, 151 (2011) 1025-1030
  • [46] E. Kantar, Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires. Journal of Alloys and Compounds, 676 (2016) 337-346.
  • [47] E. Kantar, M. Ertas, Influence of Frequency on the Kinetic Spin-3/2 Cylindrical Ising Nanowire System in an Oscillating Field, Journal of Superconductivity and Novel Magnetism, 28 (2015) 2529-2538.
  • [48] E. Kantar, M. Ertas, Cylindrical Ising nanowire in an oscillating magnetic field and dynamic compensation temperature, Superlattice Microst, 75 (2014) 831-842.
  • [49] M. Ertas, E. Kantar, Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures, Phase Transit, 88 (2015) 567-581.
  • [50] A. Feraoun, A. Zaim, M. Kerouad, Monte Carlo study of a mixed spin (1,3/2) ferrimagnetic nanowire with core/shell morphology, Physica B, 445 (2014) 74-80.
  • [51] E. Kantar, M. Ertas, M. Keskin, Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field, Journal of Magnetism and Magnetic Materials, 361 (2014) 61-67.
  • [52] B. Deviren, E. Kantar, M. Keskin, Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field, Journal of Magnetism and Magnetic Materials, 324 (2012) 2163-2170.
  • [53] E. Kantar, Y. Kocakaplan, Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors, Journal of Magnetism and Magnetic Materials, 393 (2015) 574-583.
  • [54] R. Honmura, T. Kaneyoshi, J. Phys. C: Solid State Phys. 12 (1979) 3979; T. Kaneyoshi, I.P. Fittipaldi, R. Honmura, T. Manabe, New Correlated-Effective-Field Theory in the Ising-Model, Physical Review B, 24 (1981) 481-484.
  • [55] J.W. Tucker, J. Phys. A: Math. Gen. 27 (1994) 659.
  • [56] Y. Kocakaplan, E. Kantar, M. Keskin, Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur Phys J B, 86 (2013).
  • [57] H. Magoussi, A. Zaim, M. Kerouad, Monte Carlo simulation of the magnetic properties of a spin-1 Blume-Capel nanowire, Solid State Commun, 200 (2014) 32-41.
  • [58] H. Magoussi, A. Zaim, M. Kerouad, Magnetic properties of a nanoscaled ferrimagnetic thin film: Monte Carlo and effective field treatments, Superlattices and Microstructures, 89 (2016) 188-203.
  • [59] M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, R. Ahuja, Magnetic properties of a diluted spin-1/2 Ising nanocube, Physica A, 443 (2016) 385-398.
  • [60] J.S. Suen, M.H. Lee, G. Teeter, J.L. Erskine, Magnetic hysteresis dynamics of thin Co films on Cu(001), Physical Review B, 59 (1999) 4249-4259.
  • [61] H.W. Wu, C.J. Tsai, L.J. Chen, Room temperature ferromagnetism in Mn+-implanted Si nanowires, Appl Phys Lett, 90 (2007).
  • [62] S. Ishrat, K. Maaz, K.J. Lee, M.H. Jung, G.H. Kim, Fabrication and temperature-dependent magnetic properties of one-dimensional embedded nickel segment in gold nanowires, J Alloy Compd, 541 (2012) 483-487.