Rüzgar Türbinleri için Kanat Profillerinin Sayısal Olarak Test Edilmesi

Daha verimli rüzgar türbinleri oluşturmak için farklı kanatçık ailesinden beş kanat profili seçilmiştir. Seçilen bu kanatlar farklı hücum açılarında (0o, 5o, 10o, 15o ve 20o) ve farklı rüzgar hızlarında (4,7,12 ve 20 m/s) sayısal olarak test edilmişlerdir. Burada amaç rüzgar türbininin verimi üzerinde doğrudan etkili olan kanat performansını ölçmektedir. Genel olarak bir kanadın performansı CL / CD oranı ile ölçülmektedir. Burada CLkaldırma kuvveti katsayısı ve C ise sürükleme kuvveti katsayısıdır. Sayısal çalışmadan elde edilen CL/CDdeğerleri hücum açısıyla ve serbest akım hızıyla olan değişimleri analiz edilmiştir. Yapılan sayısal analize göre rüzgar hızının artması tüm kanat performanslarını azalan bir eğimle artırmıştır. Kanatlar içerisinde FX 63-137 kanat profili 0

Numerical Testing of the Airfoil Profiles for The Wind Turbines

To exist more efficiently wind turbines, five airfoil profiles was selected from different airfoil families. The selected airfoils were tested numerically for the different angles of attack (0o, 5o, 10o, 15o ve 20o) and different wind velocities (4,7,12 ve 20 m/s). Here the aim was to measure the performance of the airfoils given as CL/CDdue to the wind turbine efficiency scaled to directly. Here CL and CD is the lift coefficient and drag coefficient of the airfoil respectively. Values of C/CD obtained from the numerical study was analysed for the variations with attack angle and free stream velocity. According to the analysys done, at a given attack angle, the wind velocity increasing has increased the performance of the airfoils in a gradient slow decreasing. Among the airfoil profiles, FX 63-137 airfoil profile has shown higher performance than others for the angles of attacks between 0o<= ? <= 15o. GOE 795 profile for the angles of attack between 4o <= ? <= 6o and EPPLER 580 for the angles of attack between 0o <= ? <= 5o has indicated the similar performance with FX 63-137. In general, maximum performance has been observed in all profiles for the angle of attacks between 3o<= ? <= 7o in the all velocity variations

___

  • [1]Amanullah Choudhry,,Maziar Arjomandi,Richard Kelso, A study of long separation bubble on thick airfoils and its consequent effects, International Journal of Heat and Fluid Flow, Volume 52, April 2015, Pages 84-96.
  • [2] Bertagnolio F., Sorensen N.N. and Rasmussen F., "New Insight into the Flow around a Wind Turbine Airfoil Section" J. Solar Energy-Trans.ASME, 217(2), 214-222, 2005
  • [3]DongliMa,YanpingZhao,YuhangQiao,GuanxiongLi,"Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number" ChineseJournalofAeronauticsVolume28,Issue4, August 2015, Pages 1003-1015
  • [4] Geissler W., Numerical Study of Buffet and Transonic Flutter on the NLR 7301 Airfoil, Aerospace Science and Technology, 7, 540-550, 2003
  • [5] Heyong Xu, Shilong Xing, Zhengyin Ye, "Numerical simulation of the effect of a co-flow jet on the wind turbine airfoil aerodynamic characteristics" Procedia Engineering 126 (2015) 706 -710
  • [6]K. Melih GÜLERENve Sinan DEMİR, "Rüzgar Türbinleri İçin Düşük Hücum Açılarında Farklı Kanat Profillerinin Performans Analizi" Isı Bilimi ve Tekniği Dergisi, 31,2, 51-59,(2011)
  • [7] Michael S.Selig and Bryan D. Mc Granahan,"Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines" National Renewable Energy Laboratory, Period of Performance: October 31, 2002-January 31
  • [8] Martinat G., Braza M., Hoarau Y. and Harran G., Turbulence Modelling of the Flow Past a Pitching (2008). NACA0012 Airfoil at 105 and 106 Reynolds Numbers, J. Fluids and Structures,24, 1294-1303, 2008
  • [9] Nicolas Pellerin, Sébastien Leclaire, Marcelo Reggio (2015),"An implementation of the Spalart-Allmaras turbulence model in a multi-domain lattice Boltzmann method for solving turbulent airfoil flows Computers&MathematicswithApplications"Volume70,Issue12, December, Pages 3001-3018, (2015)
  • [10]P.A.CostaRocha,H.H.BarbosaRocha,F.O.MouraCarneiro,M.E.VieiradaSilva,C.FreitasdeAndrade,"A case study on the calibration of thek-?SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils" EnergyVolume97, 15 February 2016, Pages 144-150
  • [11]Parezanovic V., Rasuo B. and Adzic M., "Design of Airfoils for Wind Turbine Blades", The French-Serbian European Summer University: Renewable Energy Sources and Environment-Multidisciplnary Aspect, 17-24 October 2006, Rnja?ka Banja, Serbia
  • [12]QuanWang,JinChen,XiaopingPang,SonglinLi,XiaofengGuo"A new direct design method for the medium thickness wind turbine airfoil" JournalofFluidsandStructuresVolume43, November 2013, Pages 287-301
  • [13] Tangler J. T. and Somers D. M., "NREL Airfoil Families for HAWT" Proc. Wınd Power '95, Washington D.C., ABD, 117-123, 1995
  • [14]WeiZhang,WanCheng,WeiGao,AdnanQamar,RaviSamtaney,"Geometrical effects on the airfoil flow separation and transition"Computers&FluidsVolume116, 15 August 2015, Pages 60-73
  • [15]http://m-selig.ae.illinois.edu/ads/coord_database.html