Composition And Temperature Dependences In Ising-Type Multisegment Nanostructure

Composition And Temperature Dependences In Ising-Type Multisegment Nanostructure

In the present study, an Ising-type multisegment nanowire (IMN) with ferromagnetic / non-magnetic segment structure is investigated by means of the effective-field theory (EFT) with correlations. The effects of the composition (p) and temperature (T) on the magnetic hysteresis properties are investigated in detail. The coercive field (HC) and squareness (Mr /MS) of the IMN is also derived from hysteresis loops as a function of p and T. In this system, it was found that the p and T have a significant effect on the magnetic behavior. When the obtained theoretical results compare with some experimental works of nanowire in view of hysteresis behaviors, a very good agreement between them is observed.

___

  • [1] R. Ghosh, and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/pSi heterojunction,” Applied Physics Letters, vol. 90, no. 24, Jun 11, 2007.
  • [2] S. W. Jung, W. I. Park, G. C. Yi, and M. Kim, “Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures,” Advanced Materials, vol. 15, no. 16, pp. 1358-+, Aug 15, 2003.
  • [3] J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, and Y. Shi, “Fermi-level band filling and band-gap renormalization in Ga-doped ZnO,” Applied Physics Letters, vol. 86, no. 19, May 9, 2005.
  • [4] J. Luo, Z.P. Huang, Y.G. Zhao, L. Zhang, and J. Zhu, “Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes,” Advanced Materials, vol. 16, pp. 1512– 1515, 2004.
  • [5] C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, “Single-electron transistors in heterostructure nanowires,” Applied Physics Letters, vol. 83, no. 10, pp. 2052-2054, Sep 8, 2003.
  • [6] S. Park, S. W. Chung, and C. A. Mirkin, “Hybrid organicinorganic, rod-shaped nanoresistors and diodes,” Journal of the American Chemical Society, vol. 126, no. 38, pp. 11772- 11773, Sep 29, 2004.
  • [7] V. S. Leite, and W. Figueiredo, “Spin-glass surface disorder on the magnetic behaviour of antiferromagnetic small particles,” Physica a-Statistical Mechanics and Its Applications, vol. 350, no. 2-4, pp. 379-392, May 15, 2005.
  • [8] T. Kaneyoshi, “Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 21, pp. 3630-3636, Nov, 2009.
  • [9] M. Saber, I. Lukyanchuk, M. Madani, A. Tabyaoui, and A. Ainane, “The dielectric properties of the KH2PO4/KD2H2PO4 superlattice,” Chinese Journal of Physics, vol. 45, no. 1, pp. 58-74, Feb, 2007.
  • [10] I. Apostolova, and J. M. Wesselinowa, “Magnetic control of ferroelectric properties in multiferroic BiFeO3 nanoparticles,” Solid State Communications, vol. 147, no. 3- 4, pp. 94-97, Jul, 2008.
  • [11] A. Lipinska, C. Simserides, K. N. Trohidou, M. Goryca, P. Kossacki, A. Majhofer, and T. Dietl, “Ferromagnetic properties of p-(Cd,Mn)Te quantum wells: Interpretation of magneto-optical measurements by Monte Carlo simulations,” Physical Review B, vol. 79, no. 23, Jun, 2009.
  • [12] E. Kantar, and M. Keskin, “Thermal and magnetic properties of ternary mixed Ising nanoparticles with coreshell structure: Effective-field theory approach,” Journal of Magnetism and Magnetic Materials, vol. 349, pp. 165-172, Jan, 2014.
  • [13] G. Salazar-Alvarez, J. Sort, A. Uheida, M. Muhammed, S. Surinach, M. D. Baro, and J. Nogues, “Reversible postsynthesis tuning of the superparamagnetic blocking temperature of gamma-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions,” Journal of Materials Chemistry, vol. 17, no. 4, pp. 322-328, 2007.
  • [14] L. Xi, Z. Wang, Y. Zuo, and X. N. Shi, “The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7-Co nanoshell by thermal reduction,” Nanotechnology, vol. 22, no. 4, Jan 28, 2011.
  • [15] J. H. Lee, I. N. Lund, E. T. Eisenbraun, and R. E. Geer, “Silicide-induced multi-wall carbon nanotube growth on silicon nanowires,” Nanotechnology, vol. 22, no. 8, Feb 25, 2011.
  • [16] G. S. Chaubey, V. Nandwana, N. Poudyal, C. B. Rong, and J. P. Liu, “Synthesis and characterization of bimagnetic bricklike nanoparticles,” Chemistry of Materials, vol. 20, no. 2, pp. 475-478, Jan 22, 2008.
  • [17] L. Wang, K. YuZhang, A. Metrot, P. Bonhomme, and M. Troyon, “TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires,” Thin Solid Films, vol. 288, no. 1-2, pp. 86-89, Nov 15, 1996.
  • [18] M. Chen, P. C. Searson, and C. L. Chien, “Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires,” Journal of Applied Physics, vol. 93, no. 10, pp. 8253-8255, May 15, 2003.
  • [19] L. Clime, S. Y. Zhao, P. Chen, F. Normandin, H. Roberge, and T. Veres, “The interaction field in arrays of ferromagnetic barcode nanowires,” Nanotechnology, vol. 18, no. 43, Oct 31, 2007.
  • [20] Z. X. Song, Y. J. Xie, S. W. Yao, H. Z. Wang, W. G. Zhang, and Z. Y. Tang, “Microstructure and magnetic properties of electrodeposited Co/Cu multilayer nanowire arrays,” Materials Letters, vol. 65, no. 11, pp. 1562-1564, Jun 15, 2011.
  • [21] L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A. Fert, “Giant Magnetoresistance in Magnetic Multilayered Nanowires,” Applied Physics Letters, vol. 65, no. 19, pp. 2484-2486, Nov 7, 1994.
  • [22] K. Liu, K. Nagodawithana, P. C. Searson, and C. L. Chien, “Perpendicular Giant Magnetoresistance of Multilayered Co/Cu Nanowires,” Physical Review B, vol. 51, no. 11, pp. 7381-7384, Mar 15, 1995.
  • [23] R. Sharif, X. Q. Zhang, M. K. Rahman, S. Shamaila, J. Y. Chen, X. F. Han, and Y. K. Kim, “Fabrication and Magnetization Reversal Processes for Co/Cu Multilayer Nanowires,” Ieee Transactions on Magnetics, vol. 45, no. 10, pp. 4033-4036, Oct, 2009.
  • [24] J. U. Cho, J. H. Min, S. P. Ko, J. Y. Soh, Y. K. Kim, J. H. Wu, and S. H. Choi, “Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires,” Journal of Applied Physics, vol. 99, no. 8, Apr 15, 2006.
  • [25] S. Dubois, E. Chassaing, J. L. Duvail, L. Piraux, and M. G. Waals, “Preparation and characterization of electrodeposited Fe and Fe/Cu nanowires,” Journal De Chimie Physique Et De Physico-Chimie Biologique, vol. 96, no. 8, pp. 1316-1331, Sep, 1999.
  • [26] K. Y. Kok, C. M. Hangarter, B. Goldsmith, I. K. Ng, N. B. Saidin, and N. V. Myung, “Synthesis and characterization of electrodeposited permalloy (Ni80Fe20)/Cu multilayered nanowires,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 24, pp. 3876-3881, Dec, 2010.
  • [27] X. T. Tang, G. C. Wang, and M. Shima, “Superparamagnetic behavior in ultrathin CoNi layers of electrodeposited CoNi/Cu multilayer nanowires,” Journal of Applied Physics, vol. 99, no. 12, Jun 15, 2006.
  • [28] X. T. Tang, G. C. Wang, and M. Shima, “Layer thickness dependence of CPP giant magnetoresistance in individual CoNi/Cu multilayer nanowires grown by electrodeposition,” Physical Review B, vol. 75, no. 13, Apr, 2007.
  • [29] P. Shakya, B. Cox, and D. Davis, “Giant Magnetoresistance and Coercivity of electrodeposited multilayered FeCoNi/Cu and CrFeCoNi/Cu,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 4, pp. 453- 459, Feb, 2012.
  • [30] J. J. Park, M. Reddy, C. Mudivarthi, P. R. Downey, B. J. H. Stadler, and A. B. Flatau, “Characterization of the magnetic properties of multilayer magnetostrictive irongallium nanowires,” Journal of Applied Physics, vol. 107, no. 9, May 1, 2010.
  • [31] Y. Peng, T. Cullis, G. Mobus, X. J. Xu, and B. Inkson, “Nanoscale characterization of CoPt/Pt multilayer nanowires,” Nanotechnology, vol. 18, no. 48, Dec 5, 2007.
  • [32] H. P. Liang, Y. G. Guo, J. S. Hu, C. F. Zhu, L. J. Wan, and C. L. Bai, “Ni-Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio,” Inorganic Chemistry, vol. 44, no. 9, pp. 3013-3015, May 2, 2005.
  • [33] P. Panigrahi, and R. Pati, “Tuning the ferromagnetism of one-dimensional Fe/Pt/Fe multilayer barcode nanowires via the barcode layer effect,” Physical Review B, vol. 76, no. 2, Jul, 2007.
  • [34] M. Elawayeb, Y. Peng, K. J. Briston, and B. J. Inkson, “Electrical properties of individual NiFe/Pt multilayer nanowires measured in situ in a scanning electron microscope,” Journal of Applied Physics, vol. 111, no. 3, Feb 1, 2012.
  • [35] S. Valizadeh, L. Hultman, J. M. George, and P. Leisner, “Template synthesis of Au/Co multilayered nanowires by electrochemical deposition,” Advanced Functional Materials, vol. 12, no. 11-12, pp. 766-772, Dec, 2002.
  • [36] K. Qi, X. H. Li, H. Zhang, L. Wang, D. S. Xue, H. L. Zhang, B. F. Zhou, N. J. Mellors, and Y. Peng, “Nanoscale characterization and magnetic property of NiCoCu/Cu multilayer nanowires,” Nanotechnology, vol. 23, no. 50, Dec 21, 2012.
  • [37] F. Nasirpouri, “Tunable Distribution of Magnetic Nanodiscs in an Array of Electrodeposited Multilayered Nanowires,” Ieee Transactions on Magnetics, vol. 47, no. 8, pp. 2015-2021, Aug, 2011.
  • [38] M. Y. Rafique, L. Q. Pan, and A. Farid, “From nanodendrite to nano-sphere of Co100-xNix alloy: Composition dependent morphology, structure and magnetic properties,” Journal of Alloys and Compounds, vol. 656, pp. 443-451, Jan 25, 2016.
  • [39] V. Vega, T. Bohnert, S. Martens, M. Waleczek, J. M. Montero-Moreno, D. Gorlitz, V. M. Prida, and K. Nielsch, “Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes,” Nanotechnology, vol. 23, no. 46, Nov 23, 2012.
  • [40] P. Sirisangsawang, W. Rattanasakulthong, and S. Pinitsoontorn, “Composition dependence of structural, morphological and magnetic properties of Co (FCC)-Cu granular films,” International Journal of Physical Sciences, vol. 7 pp. 6044-6052, 2012.
  • [41] X. Lin, G. Ji, T. Gao, J. Nie, and Y. Du, “Magnetic properties of Co–Cu nanowire arrays fabricated in different conditions by SC electrodeposition,” Solid State Communications, vol. 152, no. 16, pp. 1585-1589, 2012.
  • [42] C. Bran, E. M. Palmero, R. P. del Real, and M. Vazquez, “CoFeCu electroplated nanowire arrays: Role of composition and annealing on structure and magnetic properties,” physica status solidi (a), vol. 211, no. 5, pp. 1076-1082, 2014.
  • [43] H. Z. Yang, M. Zeng, and R. H. Yu, “Magnetic properties of the NixCo1-x/Cu multilayer nanowires,” Materials Research Bulletin, vol. 57, pp. 249-253, Sep, 2014.
  • [44] N. Zaim, A. Zaim, and M. Kerouad, “Monte Carlo study of the random magnetic field effect on the phase diagrams of a spin-1 cylindrical nanowire,” Journal of Alloys and Compounds, vol. 663, pp. 516-523, 2016.
  • [45] M. Keskin, N. Sarli, and B. Deviren, “Hysteresis behaviors in a cylindrical Ising nanowire,” Solid State Communications, vol. 151, no. 14-15, pp. 1025-1030, JulAug, 2011.
  • [46] E. Kantar, “Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires,” Journal of Alloys and Compounds, vol. 676, pp. 337-346, Aug 15, 2016.
  • [47] E. Kantar, and M. Ertas, “Influence of Frequency on the Kinetic Spin-3/2 Cylindrical Ising Nanowire System in an Oscillating Field,” Journal of Superconductivity and Novel Magnetism, vol. 28, no. 8, pp. 2529-2538, Aug, 2015.
  • [48] E. Kantar, and M. Ertas, “Cylindrical Ising nanowire in an oscillating magnetic field and dynamic compensation temperature,” Superlattices and Microstructures, vol. 75, pp. 831-842, Nov, 2014.
  • [49] M. Ertas, and E. Kantar, “Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures,” Phase Transitions, vol. 88, no. 6, pp. 567-581, Jun 3, 2015.
  • [50] A. Feraoun, A. Zaim, and M. Kerouad, “Monte Carlo study of a mixed spin (1,3/2) ferrimagnetic nanowire with core/shell morphology,” Physica B-Condensed Matter, vol. 445, pp. 74-80, Jul 15, 2014.
  • [51] E. Kantar, M. Ertas, and M. Keskin, “Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 361, pp. 61-67, Jun, 2014.
  • [52] B. Deviren, E. Kantar, and M. Keskin, “Dynamic phase transitions in a cylindrical Ising nanowire under a timedependent oscillating magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 13, pp. 2163-2170, Jul, 2012.
  • [53] E. Kantar, and Y. Kocakaplan, “Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors,” Journal of Magnetism and Magnetic Materials, vol. 393, pp. 574-583, Nov 1, 2015.
  • [54] E. Kantar, “Composition, temperature and geometric dependent hysteresis behaviours in Ising-type segmented nanowire with magnetic and diluted magnetic, and its soft/hard magnetic characteristics,” Philosophical Magazine, vol. 97, no. 6, pp. 431-450, 2017.
  • [55] E. Kantar, “Geometry-Dependent Magnetic Properties of Ising-Type Multisegment Nanowires,” Journal of Superconductivity and Novel Magnetism, vol. 29, no. 10, pp. 2699-2704, Oct, 2016.
  • [56] T. Kaneyoshi, I. P. Fittipaldi, R. Honmura, and T. Manabe, “New Correlated-Effective-Field Theory in the Ising-Model,” Physical Review B, vol. 24, no. 1, pp. 481- 484, 1981.
  • [57] J.W. Tucker, “Generalized Van der Waerden identities,” Journal of Physics A: Mathematical and General, vol. 27, pp. 659 1994.
  • [58] Y. Kocakaplan, E. Kantar, and M. Keskin, “Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effectivefield theory based on a probability distribution technique,” European Physical Journal B, vol. 86, no. 10, Oct 7, 2013.
  • [59] H. Magoussi, A. Zaim, and M. Kerouad, “Monte Carlo simulation of the magnetic properties of a spin-1 BlumeCapel nanowire,” Solid State Communications, vol. 200, pp. 32-41, Dec, 2014.
  • [60] H. Magoussi, A. Zaim, an M. Kerouad, “Magnetic properties of a nanoscaled ferrimagnetic thin film: Monte Carlo and effective field treatments,” Superlattices and Microstructures, vol. 89 pp. 188-203, 2016.
  • [61] M. El Hamri, S. Bouhou, I. Essaoudi, A. Ainane, and R. Ahuja, “Magnetic properties of a diluted spin-1/2 Ising nanocube,” Physica a-Statistical Mechanics and Its Applications, vol. 443, pp. 385-398, Feb 1, 2016.
  • [62] J. S. Suen, M. H. Lee, G. Teeter, and J. L. Erskine, “Magnetic hysteresis dynamics of thin Co films on Cu(001),” Physical Review B, vol. 59, no. 6, pp. 4249-4259, Feb 1, 1999.
  • [63] H. W. Wu, C. J. Tsai, and L. J. Chen, “Room temperature ferromagnetism in Mn+-implanted Si nanowires,” Applied Physics Letters, vol. 90, no. 4, Jan 22, 2007.
  • [64] S. Ishrat, K. Maaz, K. J. Lee, M. H. Jung, and G. H. Kim, “Fabrication and temperature-dependent magnetic properties of one-dimensional embedded nickel segment in gold nanowires,” Journal of Alloys and Compounds, vol. 541, pp. 483-487, Nov 15, 2012.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği