Biyoçarın Toprağın Fiziksel, Kimyasal ve Biyolojik Özelliklerine Etkileri

Toprak, su ve havayı kirletmeden tarımsal üretimin sürdürülebilirliğini sağlamak toprağın kalitesinin korunması ve iyileştirilmesi ile mümkün olabilir. Toprağın kalitesinin korunması ve iyileştirilmesine katkı veren en önemli bileşen şüphesiz organik maddedir. Ancak organik maddenin toprakta kalma süresinin kısa olması sürekli ilavesini gerekli kılmaktadır. Çeşitli bitki ve hayvan atıklarının oksijenin az veya hiç bulunmadığı ortamda termo-kimyasal değişimi ile elde edilen biyoçar, yüksek karbon içeriği ve yüzey alanı ve ayrışma karşı direnci gibi özellikleri nedeni ile organik maddenin bu eksikliğini giderebilecek potansiyele sahiptir. Organik maddeye kıyasla üstün özellikleri nedeni ile biyoçar, son yıllarda çok sayıda bilim insanının ilgisini çekmiş ve biyoçarın çevre üzerine etkileri araştırılmaya başlanmıştır. Biyoçarın toprağın fiziksel, kimyasal ve biyolojik özelikleri üzerine etkilerini araştırmak üzere inkübasyon çalışmaları yapılmış, sera ve arazi denemeleri kurulmuş ve sonuçları yayınlanmaya başlanmıştır. Bu derlemede biyoçarın toprağın fiziksel, kimyasal ve biyolojik özellikleri üzerine etkilerini araştıran ve çoğunluğu son yıllarda yayınlanmış 128 adet çalışmanın önemli bulguları ve tartışmaları özetlenmiştir. Bugüne adar yayınlanan çalışmaların çoğunluğu kısa süreli inkübasyon ve sera çalışmalardan oluşmaktadır. Biyoçarın devam eden etkisinin anlaşılabilmesi için uzun süreli arazi denemelerine gereksinim vardır

Effects of Biochar on Physical, Chemical and Biological Properties of Soils

Sustainability of agricultural production without polluting soil, water and air may be possible by conserving and improving the quality of soils. The most important component that contributes to conservation and improvement of soil quality is undoubtedly organic matter. However, short life of organic matter in soil due to mineralization requires continuous addition of organic matter to sustain the benefits. Biochar obtained by thermochemical decomposition of various plant and animal wastes in a little or oxygen free environment has potential to overcome the shortcoming of organic matter due to high carbon content, surface area and resistance to degradation. The superior characteristics of biochar compared to organic matter have recently attracted the attentions of many scientists who conducted researches to investigate the effects of biochars on environment. In order to investigate the effects of biochars on physical, chemical and biological properties of soils, incubation studies were carried out, greenhouse and field experiments were established and the results started to be published. In this review, important findings and discussions of 128 studies, majority of which have been published in recent years, that investigated the effects of biochars on physical, chemical and biological properties of soils have been summarized. The majority of published studies are composed of short-term incubation and greenhouse studies. Long-term field experiments are required to understand the extent of biochar impact on environment

___

  • Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191.
  • Abiven, S., Hund, A., Martinsen, V., Cornelissen, G. 2015. Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia. Plant and soil, 395(1-2), 45-55.
  • Adrias, P.J.V. del Rosario, M.R. 2017. Soil Properties and Response of Spring Onion to Different Levels of Biochar. International Journal of Agricultural Technology, 13(1), 131-137.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S. Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
  • Amonette, J.E., Jospeh, S., 2009. Characteristics of Biochar: Microchemical Properties. In: J. Lehmann, Joseph, S. (Ed), Biochar for Environmental Management Science and Technology. Earthscan, London.
  • Arnosti, C., Bell, C., Moorhead, D.L., Sinsabaugh, R.L., Steen, A.D., Stromberger, M., ... & Weintraub, M.N. 2014. Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry, 117(1), 5-21.
  • Antal Jr, M.J. Grönli, M. 2003. The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research 42(8): 1619-1640.
  • Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Horie, T. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research,111(1), 81-84.
  • Bachmann, J., Guggenberger, G., Baumgartl, T., Ellerbrock, R.H., Urbanek, E., Goebel, M.O.,…& Fischer, W. R. 2008. Physical carbon‐sequestration mechanisms under special consideration of soil wettability. Journal of Plant Nutrition and Soil Science, 171(1), 14-26.
  • Bailey, V.L., Fansler, S.J., Smith, J.L., Bolton, H. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry, 43(2), 296-301.
  • Baldock, J.A. Smernik, R.J. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood’, Organic Geochemistry, 33:1093–1109
  • Bandick A.K., Dick R.P. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem., 31, 1471-1479
  • Beaton, J. D. 1959. The influence of burning on the soil in the timber range area of Lac le Jeune, British Columbia: I. Physical properties. Canadian Journal of Soil Science, 39(1), 1-5.
  • Bera, T., Collins, H.P., Alva, A.K., Purakayastha, T. J., Patra, A.K. 2016. Biochar and manure effluent effects on soil biochemical properties under corn production. Appl Soil Ecology, 107, 360-367.
  • Biederman, L.A. Harpole, W.S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis, GCB Bioenergy, 5, 202–214.
  • Brewer, C.E., Brown, R.C. 2012. Biochar. In: Sayigh, A. (Ed.), Comprehensive Renewable Energy. Elsevier, Oxford, pp. 357–384.
  • Bridle, T.R., Pritchard, D. 2004. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 50, 169–175.
  • Briggs, C., Breiner, J., Graham, R. 2012. Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Science 177 (4), 263-268.
  • Brown, R. 2009. Biochar Production Technology. In: Biochar for Environmental Management: Science and Technology (Eds. Lehmann, J. & Joseph, S.), Earthscan.
  • Bu, L.D., Liu, J.L., Zhu, L., Luo, S.S., Chen, X.P., Li, S.Q., Zhao, Y. 2013. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric Water Management, 123, 71-78.
  • Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N., Zoppini, A. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 58, 216–234
  • Carlsson, M., Andren, O., Stenstrom, J., Kirchmann, H., Katterer, T. 2012. Charcoal application to Arable Soil: effects on CO2 emissions. Comm in Soil Science and Plant Analysis, 43, 2262–2273.
  • Chan, K.Y., Dorahy, C., Tyler, S. 2007. Determining the agronomic value of composts produced from garden organics from metropolitan areas of New South Wales, Australia. Animal Production Science, 47(11), 1377-1382.
  • Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S. 2008. Agronomic values of green waste biochar as a soil amendment. Soil Research, 45(8), 629-634.
  • Chan, K.Y., Xu, Z. 2009. Biochar: nutrient properties and their enhancement. Biochar for environmental management: science and technology, 67-84.
  • Chen, J., Liu, X., Zheng, J., Zhang, B., Lu, H., Chi, Z., ... & Wang, J. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology, 71, 33-44.
  • Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., Fuhrmann, J.J. 2017. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Sci Total Environ., 574, 24-33.
  • Cheng, C.H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H. 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477-1488.
  • Cheng, Y., Cai, Z.C., Chang, S.X., Wang, J. and Zhang, J.B. 2012. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils, 48(8), 941-946.
  • Clough, T. J., Condron, L. M., Kammann, C., Müller, C. 2013. A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275-293.
  • Chun, Y., Sheng, G., Chiou, C. T., Xing, B., 2004. Compositions and sorptive properties of crop residue- derived chars. Environ. Sci. Technol. 38, 4649-4655.
  • Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P.C., Xu, J. 2017. Potential role of biochars in decreasing soil acidification-A critical review. Sci Total Environ.. 581, 601-611.
  • Deenik, J.L., McClellan, T., Uehara, G., Antal, M.J., Campbell, S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74, 1259- 1270.
  • De Luca, T.H., MacKenzie, M.D., Gundale, M.J. 2009. Biochar effects on soil nutrient transformations. In “Biochar for Environmental Management: Science and Technology” (J. Lehmann and S. Joseph, Eds.), Earthscan, London.
  • Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72(2): 243-248.
  • Demisie, W., Liu, Z., Zhang, M. 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 121, 214-221.
  • Dempster, D.N., Gleeson, D.B., Solaiman, Z.M, Jones, D.L, Murphy, D.V. 2011. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354, 311–324.
  • De Tender C.A., Debode, J., Vandecasteele, B., D’Hose, T., Cremelie, P., Haegeman, A., ... & Maes, M. 2016. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 107, 1-12.
  • Downie, A., Crosky, A., Munroe, P. 2009. Physical properties of biochar. In: Biochar for Environmental Management: Science and Technology (Eds. Lehmann, J. & Joseph, S.), Earthscan.
  • Farrell, M., Kuhn, T.K., Macdonald, L.M., Maddern, T.M., Murphy, D.V., Hall, P.A., Singh, B.P., Baumann, K., Krull, E.S., Baldock, J.A. 2013. Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465, 288-297.
  • Fungo, B., Lehmann, J., Kalbitz, K., Thionģo, M., Okeyo, I., Tenywa, M., Neufeldt, H. 2017. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil and Tillage Research, 165, 190-197.
  • Galvez, A., Sinicco, T., Cayuela, M. L., Mingorance, M. D., Fornasier, F., Mondini, C. 2012. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture, Ecosystems & Environment, 160, 3–14.
  • Gaskin, J.W., Steiner, C., Harris, K., Das, K.C., Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe, 51(6), 2061-2069.
  • Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623-633.
  • Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol. Fertil. Soils 35, 219–230.
  • Graber, E.R., Frenkel, O., Jaiswal, A.K., Elad, Y. 2014. How may biochar influence severity of diseases caused by soilborne pathogens?. Carbon Management, 5(2), 169-183.
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., Deng, H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
  • Gundale, M., DeLuca, T., 2006. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. Forest Ecology and Management 231 (1–3), 86–93.
  • Güereña, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., Riha, S. 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant and soil, 365(1-2), 239-254.
  • Günal, E., Erdem, H., Çelik, İ. 2018a. Effects of three different biochars amendment on water retention of silty loam and loamy soils. Agricultural water management, 208, 232-244.
  • Günal, E., Erdem, H., Demirbaş, A. 2018b. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science, 64(14), 1963-1974.
  • Hansen, V., Müller-Stöver, D., Imparato, V., Krogh, P.H., Jensen, L.S., Dolmer, A., Hauggaard-Nielsen, H. 2017. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study. Journal of Environmental Management, 186, 88-95.
  • Harris, P. J. F., Tsang, S. C. 1997. High resolution of electron microscopy studies of non-graphitizing carbons. Philosophical Magazine A 76 (3): 667-677.
  • Herath, H.M.S.K., Camps-Arbestain, M., Hedley, M. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209, 188-197.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Nelson, P.F. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78, 1167–1171.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 92, 223–228.
  • Jeffery, S., Meinders, M.B., Stoof, C.R., Bezemer, T.M., van de Voorde, T.F., Mommer, L., van Groenigen, J.W. 2015. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251, 47-54.
  • Jenkins, J.R., Viger, M., Arnold, E.C., Harris, Z.M., Ventura, M., Miglietta, F., Girardin, C., Edwards, R.J., Rumpel, C., Fornasier, F. Zavalloni, C. 2017. Biochar alters the soil microbiome and soil function: results of next‐generation amplicon sequencing across Europe. Gcb Bio., 9(3), 591-612.
  • Jiang, X., Denef, K., Stewart, C.E., Cotrufo, M.F. 2016. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long- term biochar-amended soil incubations. Biology and Fertility of Soils, 52(1), 1-14.
  • Jien, S.H., Wang, C.S. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225-233.
  • King, P.M. 1981. Comparison of methods for measuring severity of water repellence of sandy a soils and assessment of some factors that affect its measurement. Aust J of Soil Science 19: 275–285.
  • Kolb, S. 2007. Understanding the Mechanisms by which a Manure-Based Charcoal Product Affects Microbial Biomass and Activity, PhD thesis, University of Wisconsin, Green Bay, US.
  • Kolb, S.E., Fermanich, K.J. and Dornbush, M.E., 2009. Effect of Charcoal Quantity on Microbial Biomass and Activity in Temperate Soils. Soil Sci Soc Am J. 73(4): 1173-1181.
  • Kolton, M., Harel, Y.M., Pasternak, Z., Graber, E.R., Elad, Y., Cytryn, E. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and environmental microbiology, 77(14), 4924-4930.
  • Kookana, R.S., Sarmah, A.K., Van Zwieten, L., Krull, E., Singh, B. 2011. 3 biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in agronomy, 112(112), 103-143.
  • Knoepp, J.D., DeBano, L. F. Neary, D.G. 2005. Soil Chemistry, RMRS-GTR 42-4, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT
  • Laird, D., Fleming, P., Davis, D., Horton, R., Wang, B., Karlen, D. 2010. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 158(3–4), 443–449.
  • Lammirato, C., Miltner, A., Kaestner, M. 2011. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biology and Biochemistry, 43(9), 1936-1942.
  • Lehmann, J., da Silva Jr, J. P., Rondon, M., Cravo, M. D. S., Greenwood, J., Nehls, T., ... Glaser, B. 2002. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon. In Proceedings of the 17th World Congress of Soil Science pp. 1-12.
  • Lehmann, J., da Silva, Jr., J. P., Steiner, C., Nehls, T., Zech, W. Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments, Plant and Soil, 249:343–357.
  • Lehmann, J., Gaunt, J., Rondon, M. 2006. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change, 11, 403–427.
  • Lehmann, J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C. A., Hockaday, W.C., Crowley, D. 2011. Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836.
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J. Neves, E.G. 2006. Black carbon increases cation exchange capacity in soils, Soil Sci Soc Am J., 70, 1719–1730.
  • Liang, B., Lehmann, J., Sohi, S.P., Thies, J.E., O’Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E.G. Luizão, F.J.,2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41(2), 206-213.
  • Lima, I.M., Marshall, W.E. 2005. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties. Bioresource technology, 96(6), 699-706.
  • Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., Huang, Q. 2014. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 123, 45- 51.
  • Liu, Q., Liu, B., Zhang, Y., Lin, Z., Zhu, T., Sun, R., ... Lin, X. 2017. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N 2 O emissions?. Soil Biology and Biochemistry, 104, 8-17.
  • Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., Paz-Ferreiro, J. 2015. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere, 119, 209-216.
  • Luo, L., Gu, J.D. 2016. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. Journal of environmental management, 182, 29-36.
  • MacKenzie, M.D., DeLuca, T.H., Sala, A. 2006. Fire exclusion and nitrogen mineralization in low elevation forests of western Montana. Soil Biology and Biochemistry, 38(5), 952-961.
  • Maestrini, B., Nannipieri, P., Abiven, S. 2015. A meta‐analysis on pyrogenic organic matter induced priming effect. Gcb Bioenergy, 7(4), 577-590.
  • Major, J., Lehmann. J., Rondon. M., Goodale, C. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379
  • Masiello, C.A., Chen, Y., Gao, X., Liu, S., Cheng, H.Y., Bennett, M.R., Rudgers, J.A., Wagner, D.S., Zygourakis, K., Silberg, J.J. 2013. Biochar and microbial signaling: production conditions determine effects on microbial communication. Env. science & technology, 47(20), 11496-11503.
  • Nannipieri, P., Kandeler, E., Ruggiero, P. 2002. Enzyme Activities and Microbiological and Biochemicial Processes in Soil. In Enzymes in the environment: Activity, ecology, and applications. CRC Press.
  • Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Boeckx, P. 2015. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two- year field experiment. European Journal of Agronomy, 62, 65-78.
  • Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., ... Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci, 3(2).
  • Nelson, N.O., Agudelo, S.C., Yuan, W., Gan, J. 2011. Nitrogen and phosphorus availability in biochar- amended soils. Soil Science, 176(5), 218-226.
  • Nguyen, T.T.N., Xu, C.Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., ... & Bai, S.H. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79-96.
  • Obia, A., Mulder, J., Martinsen, V., Cornelissen, G. and Bİrresen, T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till Res, 155, 35-44.
  • Painter, T.J. 2001. Carbohydrate polymers in food preservation: An integrated view of the Maillard reaction with special reference to the discoveries of preserved foods in Sphagnum dominated peat bogs. Carbohydrate Polymers 36, 335-347.
  • Pietikäinen, J., Kiikkilä, O., Fritze, H. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231-242.
  • Peng, X., Zhu, Q.H., Xie, Z.B., Darboux, F., Holden, N.M. 2016. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. Catena, 138, 30-37.
  • Purakayastha, T.J., Kumari, S., Pathak, H. 2015. Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma, 239, 293-303.
  • Quilliam, R.S., DeLuca, T.H., Jones, D.L. 2013. Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant and soil, 366(1-2), 83-92.
  • Regelink, I. C., Stoof, C. R., Rousseva, S., Weng, L., Lair, G. J., Kram, P., ... & Comans, R. N. 2015. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma, 247, 24- 37.
  • Ritz, K., McNicol, J.W., Nunan, N., Grayston, S., Millard, P., Atkinson, D., Gollotte, A., Habeshaw, D., Boag, B., Clegg, C.D., Griffiths, B.S. 2004. Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiology Ecology, 49(2), 191-205.
  • Rogovska, N., Laird, D.A., Rathke, S.J., Karlen, D.L. 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 230, 340-347.
  • Rondon, M.A., Lehmann, J., Ramírez, J. and Hurtado, M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Bio. Fert. of Soils 43(6), 699-708.
  • Russel S., Gorska, E.B., Wyczoekowski A.I. 2005. The significance of studies on enzymes in soil environment. Acta Agroph. 3. 27-36.
  • Sarkhot, D.V., Berhe, A.A., and Ghezzeehei, T.A. 2012. Impact of Biochar Enriched with Dairy Manure Effluent on Carbon and Nitrogen Dynamics, J. Environ. Qual., 41, 1107–1114.
  • Sigua, G.C., Novak, J.M., Watts, D.W., Cantrell, K.B., Shumaker, P.D., Szögi, A.A., Johnson, M.G. 2014. Carbon mineralization in two Ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere, 103, 313-321.
  • Smith, J.L., Collins, H.P., Bailey, V.L. 2010. The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 42(12), 2345-2347.
  • Sohi, S. Loez-Capel, E., Krull, E., Bol, R. 2009. Biochar's roles in soil and climate change: A review of research needs. CSIRO Land and Water Science Report 05/09, 64 pp
  • Soane, B.D., 1990. The Role of Organic-Matter in Soil Compactibility - a Review of Some Practical Aspects. Soil & Tillage Research 16: 179- 201.
  • Spokas, K.A., Baker, J.M., Reicosky, D.C. 2010. Ethylene: potential key for biochar amendment impacts. Plant and soil, 333(1-2), 443-452.
  • Steiner, C. 2004. Plant nitrogen uptake doubled in charcoal amended soils, Energy with Agricultural Carbon Utilization Symposium, Athens, Georgia, U.S.A.
  • Steiner, C. Glaser, B. Teixeira, W.G., Lehmann, J. Blum, W.E.H., Zech, W. 2008. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci, 171, 893–899.
  • Subedi R, Taupe N, Ikoyi I, Bertora C, Zavattaro L, Schmalenberger A, Leahy JJ, Grignani C, 2016. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci. Total Environ. 550:924-33.
  • Sun, F., Lu, S. 2014. Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. Journal of plant nutrition and soil science, 177(1), 26-33.
  • Taghizadeh-Toosi, A., Clough, T.J., Sherlock, R.R., Condron, L.M. 2012. Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350(1-2), 57-69.
  • Troeh, F.R. Thompson, L. M. 2005. Soils and Soil Fertility, Blackwell Publishing, Iowa, US.
  • Ueno, M., Kawamitsu, Y., Komiya, Y., Sun, L. 2007. Carbonisation and gasification of bagasse for effective utilisation of sugarcane biomass. International Sugar Journal 110, 22-26.
  • Yuan, J.H., Xu, R.K. Zhang, H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource technology, 102(3), 3488-3497.
  • Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A., Chan, K.Y. 2009. Biochar and emissions of non-CO2 greenhouse gases from soil. Biochar for environmental management: science and technology, 1, 227-250.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1-2), 235-246.
  • Ventura, M., Zhang, C., Baldi, E., Fornasier, F., Sorrenti, G., Panzacchi, P., Tonon, G. 2014. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. European journal of soil science, 65(1), 186-195.
  • Verheijen, F., Jeffery, S., Bastos, A. C., Van der Velde, M., Diafas, I. 2010. Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162. von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 39(9):2183-2207.
  • Xiao, Q., Zhu, L.X., Shen, Y.F., Li, S.Q. 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research, 196:284-293.
  • Wang, T., Camps-Arbestain, M., Hedley, M., Bishop, P. 2012. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 51, 45–54.
  • Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig, M.C., 2007. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and soil, 300(1-2), 9-20.
  • Weyers, S.L., Liesch, A.M., Gaskin, J.W., Das, K.C. 2009. Earthworms Contribute to Increased Turnover in Biochar Amended Soils [abstract][CD-ROM]. ASA-CSSA-SSSA Annual Meeting Abstracts. ASA-CSSA-SSSA Annual Meeting. Nov. 1-5, 2009, Pittsburgh, PA.
  • Winsley, P. 2007. Biochar and Bionenergy Production for Climate Change. New Zealand Science Review 64 (1): 1-10.
  • Zackrisson, O., Nilsson, M.C. Wardle, D.A., 1996. Key ecological function of charcol from wildfires in the Boreal forest. Oikos: 77, 10-19.
  • Zhang, Q.Z., Dijkstra, F.A., Liu, X.R., Wang, Y.D., Huang, J., Lu, N. 2014. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PloS one, 9(7), e102062.
  • Zhang, Q., Du, Z., Lou, Y., He, X. 2015. A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions. Catena, 127:26-31.
  • Zhao, L., Zheng, W., Mašek, O., Chen, X., Gu, B., Sharma, B. K., Cao, X. 2017. Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity. Journal of environmental quality, 46(2), 393-401.
  • Zimmerman, A.R., Gao, B., Ahn, M.Y. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Bioch., 43(6), 1169-1179.