İndüklenmiş lakkaz ile 2,4-diklorofenolün dehalojenasyonu ve detoksifikasyonu

2,4-diklorofenol pestisitlerin üretiminde kullanılan rekalsitrant bir bileşiktir. Buğday kepeği ile indüklenmiş patates dekstroz broth besiyerinde üretilen Trametes versicolor ATCC (200801)’den elde edilen ham lakkaz ile 2,4-diklorofenolden klorun uzaklaştırılması değerlendirilmiştir. pH, substrat konsantrasyonu, reaksiyon süresi, sıcaklığı ve enzim miktarı gibi deklorinasyon için optimizasyon parametreleri çalışılmıştır. Bu çalışmaların sonunda pH 4, 400 µM başlangıç substrat konsantrasyonu, reaksiyon süresi 7 dakika, sıcaklık 30 ºC seçilmiştir. Daha once belirlenen optimum şartlarda oksijen tüketimi ile deklorinasyon süreci arasındaki ilişki incelenmiştir ve çözünmüş oksijende azalma gözlemlenmiştir. Bu bileşiğin deklorinasyonundan sonra kimyasal yapısındaki Benli et.al. / IUFS Journal of Biology 2011 70(2):25-34 değişiklikler FT-IR analizi ile, toksisitesindeki değişimler ise Microtox ile belirlenmiştir. Spektradaki yayvan ve şiddetli pikler; yük transferi ve elektrostatik etkileşimlerle meydana gelen deklorinasyona bir kanıt olarak gösterilebilir. Toksisite deneyleri, 2,4-DCP’nin deklorinasyona ilaveten detoksifiye olduğunu da göstermiştir. Bunun yanısıra deklorinasyon deneylerinde istatistik analizler gerçekleştirilmiştir.
Anahtar Kelimeler:

2, 4-DCP, deklorinasyon, lakkaz

Dehalogenation and detoxification of 2,4-dichlorophenol with induced laccase

2,4-dichlorophenol is a recalcitrant compound which is used in the production of pesticides. Chlorine removal of 2,4-dichlorophenol with the crude laccase produced Trametes versicolor ATCC (200801) in potato dextrose broth including wheat bran was investigated. The optimization parameters for dechlorination such as pH, initial substrate concentration, reaction period, reaction temperature and amount of enzyme were examined. At the end of these studies, pH 4, 400 μM of initial substrate concentration, 7 min of reaction time, 30 ºC of temperature were selected. It was tested that correlation with oxygen consumption and dechlorination processes under the determined optimum conditions before and the decrease of dissolved oxygen was observed. Also, after the dechlorination of this compound, changes in chemical structure of the compound were determined with FTIR analysis and toxicity alterations with Microtox test were studied. Wide and intense peaks at spectra may be an evidence to dechlorination occurring with load transfers and electrostatic interactions. Toxicity experiments showed that 2,4-DCP was detoxified in addition to dechlorination. Besides, statistical analyses were performed for dechlorination experiments. Keywords: 2,4-DCP, laccase, dechlorination
Keywords:

-,

___

  • Agostini E., Coniglio M.S., Milrad S.R., Tigier H.A., Phytoremediation of 2,4-dichlorophenol by Brassica Biotechnology and Applied Biochemistry, 37(2): 139-144. A.M. (2003) napus hairy root cultures.
  • Annachhatre A.P., Gheewala S.H. (1996) Biodegradation of chlorinated phenolic compounds. 14(1): 35-56. Advances,
  • Arcand R.L., Archibald, F.S. (1991) Direct dechlorination compounds by laccases from Trametes (Coriolus) versicolor. Enzyme & Microbial Technology, 13(3): 194–203. Arısoy M., Kolankaya N. (1997) Biodegradation of lindane by Pleurotus sajor-caju and toxic effects of lindane and its metabolites on mice. Bulletin of Environmental Contamination Toxicology, 59(3): 352-359.
  • Aytar P., Gedikli S., Şam M., Ünal A., Çabuk A., Kolankaya N., Yürüm A. (2011) Desulphurization Turkish Lignites with Crude Laccase Produced from Trametes versicolor ATCC 200801. Fuel Processing Technology, 92 (1): 71-76. Some Low-rank
  • Bhattacharya S.S., Banerjee, R. (2008) Laccase mediated biodegradation of 2,4-DCP using response Chemosphere, 73(1): 81–85. methodology.
  • Bhattacharya, S.S., Karmakar, S., Banerjee, R. (2009) Optimization of laccase mediated biodegradation of 2,4-dichlorophenol using genetic algorithm. Water Research, 43(14): 3503-3510.
  • Bollag J.M., Leonowicz A. (1984) Comparative studies of extracellular fungal laccases. Appl. Env. Microbiol., 48(4):849-854.
  • Coll P.M. Tabernero C., Santamaria R., Perez P. (1993) Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971) Applied Environmental Microbiology, 59(12): 4129-4135.
  • Ehlers G.A., Rose P.D. (2005) Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed- bed reactors by employing sequencing batch operation. Bioresource Technology, 96(11): 1264-1275.
  • Exon J.H. (1984) A review of chlorinated phenols. Veterinary Human Toxicology, 26(6): 508-520.
  • Gallizia I., McClean S., Banat, I.M. (2003) Bacterial biodegradation of phenol and 2,4- dichlorophenol. Technology & Biotechnology, 78(9): 959– 963. of Chemical
  • Gan J., Wang Q., Yates S.R., Koskinen W.C., Jury W.A. (2002) Dechlorination of Chloroacetanilide herbicides by thiosulp- hate salts. PNAS, 99(8): 5189–5194.
  • Gedikli S. (2008) Çeşitli Makrofungus izolatlarının lakkaz üretim yetenekleri açısından değerlendirilmesi ve dekolorizas- yon uygulamalarında kullanılabilirliği, MSc Thesis, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Haggblom M.M. (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiology Reviews, 103(1): 29-71.
  • Hoos R. (1978) Patterns of pentachlorophenol usage in Canada: An overview. In: Rao KR (ed.) Pentochlorophenol. Plenum Press. New York, USA.
  • Hu J., Wang J. (2007) Degradation of chlorophenols in aqueous solution by γ- radiation. Radiation Physics and Chemistry, 76(8-9): 1489–1492.
  • Kameda T., Ono M., Grause G., Mizoguchi T., Yoshioka T. (2010) Chemical modification and dechlorination of polyvinyl chloride by substitution nucleophile, Polymer Engineering and Science, 50(1): 69-75. thiocyanate as a
  • Kirk T.K., Farrel R.L. (1987) Enzymatic "Combustion": The microbial degradation of lignin. Annual Review of Microbiology, 41: 465–505.
  • Limura Y., Hartikainen P., Tatsumi K. (1996) Dechlorination of tetrachloroguaiacol by laccase of white rot basidomycete Coriolus versicolor. Applied Microbiology and Biotechnology, 45: 434–439.
  • Lin J., Reddy M., Moorthi V., Qoma B.E. (2008) Bacterial removal of toxic phenols from an industrial effluent. African Journal of Biotechnology, 7(13): 2232-2238.
  • Matafonova G., Shirapova G., Zimmer C., Giffhorn F., Batoev V., Kohring G. (2006) Degradation of 2,4-dichlorophenol by Bacillus sp. isolated from an aeration pond in the Baikalsk pulp and paper mill (Russia). International Biodeterioration & Biodegradation, 58(3-4): 209–212.
  • Mayer A. M., Staples R. C. (2002) Laccase: new functions for an old enzyme. Phytochemistry, 60(6): 551–565.
  • Novotny C., Svobodova K., Erbanova P., Cajthamla T., Kasinatha A., Lang, E., Sasek, V. (2004) Ligninolytic fungi in bioremediation: extracellular enzyme pro- duction and degradation rate. Soil Biology & Biochemistry, 36(10): 1545–1551.
  • Osma J.F., Toca-Herrera J.L., Rodriguez-Couto S. (in press) Use of laccases in the food industry. SAGE Enzyme Research, doi: 10.4061/2010/918761.
  • Reddy G.V.B., Sollewijn Gelpke M.D., Gold M.H. (1998). Degradation of 2,4,6- Trichlorophenol chrysosporium: Involvement of Reductive Dechlorination. Journal of Bacteriology, 180(19), 5159-5164. by Phanerochaete
  • Tabak Ö., Gedikli S., Aytar P., Ünal A., Çabuk N. versicolor lakkazı ile pentaklorofenol ve 2,6-diklorofenol’den klor uzaklaştırılması. Elektronik Mikrobiyoloji Dergisi TR, 7(3): 13–23. (2009) Trametes of enzymatic chlorine Contamination and
  • Ünal A. (2004) Lakkaz Enzimi ile Bazı Toksik Klorofenolik Bileşiklerin Detoksifikasyonu. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü. Doktora tezi, 104.
  • Ünal A., Kolankaya N. (2004) Chlorine removal from pp’DDT by laccase enzyme produced Turkish Microbiology, 2, 17-21. versicolor. Journal of
  • Vroumsia T., Steiman R., Seigle-Murandi F., J.L. Benoit-Guyod bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4 dichlorophenol (2,4- DCP). Chemosphere, 60(10): 1471–1480.
  • Wu P., Yang GP., Zhao XK. (2003) Sorption behavior of 2,4-dichlorophenol on marine sediment. Journal of Colloid Interface Science, 265(2): 251-256.
  • Xiangchun Q., Hanchang S., Yongming Z., Jianlong W., Yi Q. (2004) Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. Seperation and Purification Technology, 34(1-3): 97–103.
  • Yarapolov A.I., Skorobogatko O.V., Vartanov S.S., Varfolomeyev S.D. (1994) Laccase properties, applicability. Applied Biochemistry and Biotechnology, 49(3): 257-279. and
  • Yoshioka T., Kameda T., Shogo I., Okuwaki A. (2008) chloride) using NaOH in ethylene glycol under Degradation and Stability, 93(6): 1138- 1141. of poly(vinyl atmospheric pressure. Polymer
  • Zhang J., Liu X., Xu Z., Chen H., Yang Y. (2008) catalyzed Biodeterioration & Biodegradation, 61(4): 351–356. of chlorophenols International by laccase.