LEGO Robotik Öğretim Uygulamalarının Kabulü Ölçeğinin Geliştirilmesi: Geçerlik ve Güvenirlik Çalışmaları

Çalışma kapsamında öğretmen adaylarının LEGO Robotik öğretim uygulamalarını benimseme ve kabul etme durumlarını belirlemek için “LEGO Robotik Öğretim Uygulamalarının Kabulü” ölçeğinin geliştirilmesi amaçlanmıştır. Ölçek geliştirme çalışması 2016-2017 öğretim yılında Bartın Üniversitesi Eğitim Fakültesi 3. ve 4. sınıflarında öğrenim gören 360 öğretmen adayıyla gerçekleştirilmiştir. Ölçek deneme formu öğretmen adaylarına uygulanmadan önce çalışma grubunun tamamına LEGO Mindstorms EV3 ve LEGO Mindstorms EV3 setinin öğrenme öğretme süreçlerinde nasıl kullanılabileceğine ilişkin temalarda video gösterimiyle tanıtım yapılmıştır. Madde analizi çalışmaları korelasyona dayalı analiz yöntemiyle gerçekleştirilmiş; ölçeğin faktör yapısı açımlayıcı ve doğrulayıcı faktör analizi çalışmalarıyla ortaya konmuştur. Açımlayıcı ve doğrulayıcı faktör analizi çalışmaları ölçeğin tek faktörlü dört bileşenli bir yapıya sahip olduğunu göstermektedir. Ölçek bileşenleri algılanan fayda, algılanan kullanım kolaylığı, tutum ve kullanıma yönelik niyet olarak adlandırılmıştır. Ölçeğin bütününe ilişkin hesaplanan Cronbach Alpha güvenirlik katsayısı .956; ölçeğin bileşenlerine ilişkin  Cronbach Alfa güvenirlik katsayıları ise sırasıyla .924; .929; .834  ve .915 olarak hesaplanmıştır. Açımlayıcı ve doğrulayıcı faktör analizi çalışmaları ile hesaplanan Cronbach Alpha değerleri LEGO robotik öğretim uygulamalarını kabulü ölçeğinin geçerli ve güvenilir bir veri toplama aracı olduğunu göstermektedir.

Developing The Acceptance Scale Of LEGO Robotics Instructional Practices: Validity And Reliability Studies

In the scope of the study it was aimed to develop the acceptance scale of LEGO robotics instructional practices to determine the prospective teachers’ acception of LEGO robotics instructional practices. Scale development study was carried out with the help of 360 prospective teachers having been educated at Bartin University during the 2016-2017 academic semester. Before testing form of the scale was applied to the prospective teachers, they had been introduced on LEGO Mindstorms EV3 set and how to integrate these sets into learning and teaching process. Item analysis studies were done with the correlational analysis method and the factor structure of the scale was determined with the exploratory and confirmatory factor analysis methods. Both exploratory and confirmatory factor analysis studies indicated the scale had one factor and four components. The components of the scale was called as perceived benefit, perceived easy use, intention to use and attitude. Cronbach Alpha reliability parameter of the whole scale  was found as .956 and Cronbach Alpha reliability parameters of the components of the scale were found respectively as .924; .929; .834,  .915.  Exploratory and confirmatory factor analysis studies as well as Cronbach Alpha parameters indicated the acceptance scale of LEGO robotics instructional practices has been a reliable and valid data collection tool.

___

  • Walsh, W. B., & Betz, N. E. (1995). Tests and Assessment. Third Edition. New Jersey: Prentice Hall.
  • Uğur Erdoğmuş, F., & Çağıltay, K. (2013). Türkiye'de eğitim teknolojileri alanında yayımlanan yüksek lisans ve doktora tezlerinde genel eğilimler [Master and doctoral dissertations published in the field of general trends in educational technology in Turkey]. In K. Çağıltay & Y. Göktaş, Öğretim Teknolojilerinin Temelleri: Teoriler, Araştırmalar, Eğilimler [The Basics of Instructional Technologies: Theories, Research, Trends] (279-290). Ankara: Pegem Academy.
  • Teo, T. (2010). A path analysis of pre-service teachers’ attitudes to computer use: Applying and extending the technology acceptance model in an educational context. Interactive Learning Environments, 18(1), 65-79.
  • Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics. Needham Heights, Allyn & Bacon.
  • Sümer, N. (2000). Yapısal eşitlik modelleri [Structural equation models]. Türk Psikoloji Yazıları, 3(6), 49-74.
  • Sungur, K. (2013). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ve öğretmen adaylarının bakış açılarının incelenmesi [Investigation of in service and pre service science teachers perspectives about engineering-design as an instructional method and legos as an instructional material]. Unpublished master dissertation, Erciyes University, Institute of Education Sciences.
  • Strawhacker, A., & Bers, M. (2015). "I want my robot to look for food": Comparing kindergartner's programming comprehension using tangible, graphic, and hybrid user interfaces. International Journal of Technology and Design Education, 25, 293-319.
  • Spector, J. M. (2016). Foundations of educational technology: Integrative approaches and interdisciplinary perspectives (Second Edition b.). New York: Rouhledge.
  • Somyürek, S. (2015). An effective educational tool construction kits for fun and meaningful learning. International Journal of Technology and Design Education, 25, s. 25-41.
  • Shih, B., Shih, C., Li, C., Chen, T., Chen, Y., & Chen, C. (2011). Elementary school student's acceptance of Lego NXT: The technology acceptance model, a preliminary investigation. International Journal of the Physical Sciences, 5057-5063. doi:10.5897/IJPS11.708
  • Shih, B., Chen, C., Chen, C., & Hsin, I. (2012). Using Lego NXT to explore scientific literacy in disaster prevention and rescue systems. Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 64(1), 153-171. doi:10.1007/s11069-012-0233-2
  • Prensky, M. (2010). Teaching digital natives: Partnering for real learning. Thousand Oaks, California: Corvin.
  • Prensky, M. (2001). Digital natives, digital immigrants. On The Horizon, 9(5).
  • Pala, F., & Erdem, M. (2015). Çevrimiçi öğrenme ortamları ve katılım [Online learning environments and participation]. In B. Akkoyunlu, A. İşman ve H. F. Odabaşı, Eğitim Teknolojileri Okumaları [Educational Technology Readings]. 2015. 213-232. Ankara: TOJET - The Turkish Online Journal of Educational Technology.
  • Özdoğru, E. (2013). Fiziksel olaylar öğrenme alanı için LEGO program tabanlı fen ve teknoloji eğitiminin öğrencilerin akademik başarılarına, bilimsel süreç becerilerine ve fen ve teknoloji dersine yönelik tutumlarına etkisi [The effect of Lego programme based science and technology education on the students academic achievement, science process skills and their attitudes toward Science and Technology course for pyhsical facts learning field]. Unpublished master dissertation, Dokuz Eylül University, Institute of Education Sciences
  • Ospennikova, E., Ershov, M., & Iljin, I. (2015). Educational robotics as an inovative educational technology. Procedia - Social and Behavioral Sciences, 214, 18-26.
  • Ortiz, A. (2015). Examining students' proportional reasoning strategy levels as evidence of the ımpact of an ıntegrated LEGO robotics and mathematics learning experience. Journal of Technology Education, 26(2), 4669.
  • Noar, S. M. (2003). The role of structural equation modeling in scale development. Structural Equation Modeling: A Multidisciplinary Journal, 10(4), 622-647.
  • NMC. (2017). NMC horizon report preview: 2017 higher education edition. The New Media Consortium. 20.12.2016 tarihinde http://cdn.nmc.org/media/2017-nmc-horizon-report-he-preview.pdf adresinden alındı
  • Murphy, K. R., & Davidshofer, C. O. (1998). Pschological testing principles and applications. Fourth Edition. New Jersey: Prentice Hall.
  • Murillo, A. C., Mosteo, A. R., Castellanos, J. A., & Montano, L. (2011). A practical mobile robotics engineering course using LEGO Mindstorms. Research and Education in Robotics - EUROBOT 2011. 221-235. Praque: Springer.
  • MEB. (2016). Bilgisayar Bilimi Dersi Öğretim Programı Kur 1 - Kur 2 [Computer Science Teaching Program Curriculum 1 - Curriculum 2]. Ankara.
  • McKnight, L. (2015). Still in the LEGO (LEGOS) room: female teachers designing curriculum around girls’ popular culture for the coeducational classroom in Australia. Gender and Education, 27(7), 909-927. doi:10.1080/09540253.2015.1096920
  • Koehler, M. J., Mishra, P., Kereluik, K., Shin, T. S., & Graham, C. R. (2014). The technological pedagogical content knowledge framework. In J. M. Spector, M. D. Merrill, J. Elen., & M. J. Bishop, Handbook of Research on Educational Communications and Technology (Fourth Edition b., 101-111). New York: Springer.
  • Kline, R. B. (2005). Principles and practice of structural equation modeling. NY: Guilford Publications, Inc.
  • Khee, C.M., Wei, G.W., & Jamaluddin, S.A. (2014). Students’ perception towards lecture capture based on the technology acceptance model. Procedia-Social and Behavioral Sciences, 123, 461-469.
  • Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A serious game for developing computational thinking and learning introductory computer programming. Procedia-Social and Behavioral Sciences, 47, 1991-1999. doi:10.1016/j.sbspro.2012.06.938
  • Kazez, H., & Genç, Z. (2016). İlkokul matematik öğretiminde yeni bir yaklaşım: Lego MoretoMath [A new approach in primary school mathematics teaching: Lego MoretoMath]. Journal of Instructional Technologies & Teacher Education, 5(2), 59-71.
  • Karagiorgi, Y., & Symeou, L. (2005). Translating constructivism into instructional design: Potential and limitations. Educational Technology & Society, 8(1), 17-27.
  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). NMC horizon report: 2015 higher education edition. Austin, Texas: The New Media Consortium.
  • Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., & Hall, C. (2016). NMC horizon report: 2016 higher education edition. Austin, Texas: The New Media Consortium.
  • Hsia, J. (2016). The effects of locus of control on university students' mobile learning adoption. Journal of Computing in Higher Education, 28, 1-17. doi:10.1007/s12528-015-9103-8
  • Heerink, M., Krose, B. J., Evers, V. ve Wielinga, B. J. (2006). Studying the acceptance of a robotic agent by elderly users. International Journal of ARM, 7(3), 33-43.
  • Gable, R. K. (1986). Instrument development in the affective domain. Boston: Kluwer-Nijhoff Publishing.
  • Erbaş, Ç., & Demirer, V. (2015). Eğitimde sanal ve arttırılmış gerçeklik uygulamaları [Virtual and augmented reality applications in education]. In B. Akkoyunlu, A. İşman, & H. F. Odabaşı, Eğitim Teknolojileri Okumaları [Educational Technology Readings] 2015. 131-148. Ankara: TOJET - The Turkish Online Journal of Educational Technology.
  • Duyan, V., & Gelbal, S. (2008). Barnett çocuk sevme ölçeği’ni Türkçe’ye uyarlama çalışması [Barnett's study of adapting the scale of child-loving scale to Turkish]. Eğitim ve Bilim, 33(148), 40-48.
  • Davis, F. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487.
  • Davis, F. (1989). Perceived usefullness, perceived ease of use, and user acceptance of ınformation technology. Management Information Systems Quarterly, 13(3), 319-340.
  • Dastjerdi, N. B. (2016). Factors affecting ICT adoption among distance education students based on the technology acceptance model - A case study at a distance education university in Iran. International Education Studies, 9(2), 73-80.
  • Cole, D. A. (1987). Utility of confirmatory factor analysis in test validation research. Journal of Consulting and Clinical Psychology, 55, 1019-1031.
  • Coakes, S. J. (2005). SPSS: Analysis without anguish: Version 12.0 for Windows. Melbourne: John Wiley and Sons.
  • Chesney, T. (2006). An acceptance model for useful and fun information systems. An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 225-235. doi:dx.doi.org/10.17011/ht/urn.2006520
  • Catlin, D. (2012). Maximising the effectiveness of educational robotics through the use of assessment fot learning methodologies. Proceedings of 3rd International workshop teaching Robotics, Teaching with Robotics, Integrating Robotics in School Curriculum, (s. 2-11). Riva del Garda (Trento, Italy). 09.11.2016 tarihinde http://www.terecop.eu/TRTWR2012/trtwr2012_submission_01.pdf adresinden alındı
  • Castledine, A. , & Chalmers, C. (2011). LEGO robotics: An authentic problem solving tool? Design and Technology Education: An International Journal, 16(3), 19-27.
  • Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı [Factor analysis: Basic concepts and use in developing scale]. Kuram ve Uygulamada Eğitim Yönetimi, 32, 470-488.
  • Bryman, A. , & Cramer, D. (1999). Quantitative sata analysis with SPSS release 8 for Windows: A guide for social scientist. London: Routledge.
  • Benitti, F. B. V. (2012). Exploring the educational potential of robotics in school: A systematic review. Computers & Education, 58, 978-988. doi:10.1016/j.compedu.2011.10.006.
  • Beisser, S. R. (2005). An Examination of gender differences in elementary constructionist classrooms using Lego/Logo instruction. Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and Applied Research, 22(3-4), 7-19.
  • Aufderheide, D., Krybus, W. , & Witkowski, U. (2012). Experiences with LEGO MINDSTORMS as an Embedded and Robotics Platform within the Undergraduate Curriculum. Advances in Autonomous Robotics. 185-196. Bristol: Springer.
  • Anderson, J. C. , & Gerbing, D.W. (1984). The effect of sampling error on convergence, improper solutions, and goodness of fit indices for maximum likelihood comfirmatory factor analysis. Psychometrika, 49, 155‐173, Doi: 10.1007/BF02294170.
  • Alkan, C. (2011). Eğitim Teknolojisi [Educational Technology). Ankara: Anı Publishing.
  • Adams Becker, S., Freeman, A., Giesinger Hall, C., Cummins, M., & Yuhnke, B. (2016). NMC/CoSN horizon report: 2016 K-12 edition. Austin, Texas: The New Media Consortium.
Bartın Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bartın Üniversitesi Eğitim Fakültesi
Sayıdaki Diğer Makaleler

İlkokul ve Ortaokul Öğrencilerinin Okuduğunu Anlama Düzeylerine Yönelik Öğretmen Görüşleri

Subhan EKŞİOĞLU, Zeynep DEMİRTAŞ, Selda DEMİRKOL

Türkçe ve Sosyal Bilimler Eğitimi Bölümündeki Öğretmen Adaylarının “Kitap” Kavramı Üzerine Algılarının İncelenmesi

Nevin AKKAYA, Eylem Ezgi ÖZDEMİR, Serdar AKBULUT

Pedagojik Formasyon Sertifika Programına Katılan Öğretmen Adaylarının Öğretmenlik Mesleğini Tercih Nedenleri

Sabahattin DENİZ, Uğur DOĞAN, Nurettin ŞAHİN

Oyunun Değişen Yüzü: Yetişkinlerin Çocukluk Oyunları İle Günümüz Çocuklarının Oyunlarının Karşılaştırmalı Olarak İncelenmesi

Sevcan YAĞAN GÜDER, Erhan ALABAY

LEGO Robotik Öğretim Uygulamalarının Kabulü Ölçeğinin Geliştirilmesi: Geçerlik ve Güvenirlik Çalışmaları

Barış ÇUKURBAŞI, Gamze YAVUZ KONOKMAN, Bekir GÜLER, Seçil Eda KARTAL

Sanal Dünya Risk Algısı Ölçeği (SDRAÖ)’nin Geliştirilmesi

Veysel Bilal ARSLANKARA, Ertuğrul USTA

Matematik Öğreniminde Sosyal Değişkenler ve Etkileri

Mikail AYDEMİR, Serkan ÜNSAL, Fahrettin KORKMAZ

Matematik Öğreniminde Sosyal Değişkenler

Serkan Ünsal, Fahrettin Korkmaz, Mikail Aydemir

Öğretmen Adaylarının Okuma Stratejilerini Kullanma Düzeyleri

Serpil ÖZDEMİR

Öğretim Elemanlarının Teknoloji Destekli Sınıflardaki Yeterliklerine İlişkin Öğrenci Algıları Ölçeğinin Türkçeye Uyarlanması

Selma Şenel, Bülent Pekdağ, Mustafa Tuncay Sarıtaş