Harşit Çayına ait yatak ve taraça sedimentleri arasındaki kimyasal farklılıklar (KD Türkiye): Karışık kaynak kayaç, ayrışma ve kütle transferi

Harşit Çayı kanal ve taraça sedimentleri arasında küçük jeokimyasal farklılıklar vardır. Bu farklılıklar kaynak kaya bileşiminden ziyade kimyasal ayrışma ve iklimsel farklılıklardan dolayı meydana gelmiş olabilir. Kanal sedimentleri, taraçaya göre daha düşük SiO2, Al2O3, Fe2O3, K2O, TiO2 ve MnO, fakat daha yüksek MgO, CaO ve Na2O ortalama konsantrasyonuna sahiptir. Kanal ve taraça sedimentlerinin nadir toprak element dağılımları (NTE), Eu/Eu*, (Gd/Yb)N, La/Th ve (La/Yb)N oranları, bu sedimentlerin sırasıyla %3 granodiyorit + %50 gabro + %47 felsik tüf ve %5 granodiyorit + %37 gabro + %58 felsik tüften türediğini göstermektedir. CIA, PIA, WIP değerleri ve ICV, Rb/Sr oranları kanal sedimentlerinin düşük seviyede, taraça sedimentlerinin ise düşük – orta seviyede kimyasal ayrışmaya uğradığını göstermektedir. C-değerleri ve Sr/Cu oranlarının dağılımı, kanal sedimentleri için kurak – yarı kurak, taraça sedimentleri için kurak – yarı nemli iklim şartlarının hâkim olduğunu göstermektedir. Karışık kaynak kayaçların ayrışması sırasında, kanal ve taraça sedimentlerinde en çok kayba uğrayan elementin Na, en az kayba uğrayan elementin ise P olduğu tespit edilmiştir. Kanal sedimentlerinin ortalama Si, Al, Na, K ve Mn elementleri taraçaya göre daha fazla, Fe, Mg, Ca ve P elementleri ise daha az kayba uğramıştır. 

Geochemical differences between bed and terrace sediments of the Harşit Stream (NE Turkey): Implications for mixed source rocks, weathering and mass transfer

There are minor geochemical differences between Harşit Stream bed and terrace sediments, and these can be owing to the impacts of climatic differences and chemical weathering rather than source rock composition. The bed sediments have lower average SiO2, Al2O3, Fe2O3, K2O, TiO2 and MnO concentrations than terrace sediments, but higher concentrations of MgO, CaO and Na2O. The rare earth element (REE) distributions, Eu/Eu*, (Gd/Yb)N, La/Th and (La/Yb)N ratios of the bed and terrace sediments indicate that they derived from a mixture of 3% granodiorite + 50% gabbro + 47% felsic tuff and 5 % granodiorite + 37% gabbro + 58% felsic tuff, respectively. The CIA, PIA, WIP values and ICV, Rb/Sr ratios indicate that the bed sediments are lowly weathered and terrace sediments are lowly to moderately weathered. The distribution of C-values and Sr/Cu ratios indicate an arid to semiarid climatic conditions for the bed sediments and an arid to semi-moist climatic conditions for terrace sediments. During weathering of the mixed source rocks, Na indicates the greatest loss for the bed and the terrace sediments, and P shows the lowest loss for both of sediments. The average of Si, Al, Na, K and Mn exhibits more loss in bed sediments than terrace sediments, the Fe, Mg, Ca and P exhibits less loss in bed sediments than terrace sediments. 

___

  • Alexander, P.O. and Gibbson, I.L., 1977. Rare earth abundances in Deccan trap basalts. Lithos, 10, 143–147.
  • Anderson, S.P., Dietrich, W.E. and Brimhall, G.H., 2002. Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 14, 1143–1158.
  • Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J. and Trejo-Ramírez, E., 2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance, and tectonic setting. Geological Journal, 52, 559-582.
  • Armstrong-Altrin, J.S., Botello, A.V., Villanueva, S.F. and Soto, L.A., 2019. Geochemistry of surface sediments from the north western Gulf of Mexico: implications for provenance and heavy metal contamination. Geological Quarterly, 63, 522–538.
  • Armstrong-Altrin, J.S., Ramos-Vázquez, M.A., Zavala-León, A.C. and Montiel-García, P.C., 2018. Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal, 53, 2824-2848.
  • Aslan, Z., Arslan, M., Temizel, İ. and Kaygusuz, A., 2014. K–Ar dating, whole-rock and Sr–Nd isotope geochemistry of calc-alkaline volcanic rocks around the Gümüşhane area: implications for post-collisional volcanism in the Eastern Pontides, Northeast Turkey. Mineralogy and Petrology, 108, 245–267.
  • Babechuk, M.G., Widdowson, M., Murphy, M. and Kamber, B.S., 2015. A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan traps, India. Chemical Geology, 396, 25–41.
  • Bhatia M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.
  • Blum, A.E. and Stillings, L.L., 1995. Chemical weathering of feldspars. Chemical Weathering Rates of Silicate Minerals. Min. Soc. Am. Rev. Min., 31, 291–351.
  • Brimhall, G.H. and Dietrich, W.E., 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51, 567–587.
  • Bryon, D.N., Atherton, M.P. and Hunter, R.H., 1995. The interpretation of granitic textures from serial thin sectioning, image analysis and three-dimensional reconstruction. Mineralogical Magazine, 59, 203–211.
  • Cao, J., Wu, M., Chen, Y., Hu, K., Bian, L., Wang, L. and Zhang, Y., 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Chemie der Erde, 72, 245–252.
  • Climate-Data-Org., 2020. Annual climate in Gümüşhane, Turkey. https://tr.climate-data.org/asya/tuerkiye/guemueshane-665/, accessed on 15 April 2020.
  • Condie, K.C., 1991. Another look at the rare earth elements in shales. Geochimica et Cosmochimica Acta, 35, 2527–2531.
  • Cullers, R. L., 1994. The controls on the major and trace element variation of shales, siltstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 5, 4955-4972.
  • Cullers, R. L., 1995. The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the wet Mountains region, Colorado, USA. Chemical Geology, 123, 107-131.
  • Cullers, R.L. and Podkovyrov, N., 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117, 157–183.
  • Çoğulu, E., 1975. Gümüşhane ve Rize Granitik Plutonlarının Mukayeseli Petrojeolojik ve Jeokronolojik Etüdü. PhD, İstanbul Technical University, İstanbul, Turkey (Unpublished).
  • Dokuz, A., 2011. A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton. Gondwana Research, 19, 926-944.
  • Eyuboglu, Y., 2015. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences. Gondwana Research, 212-215, 74-92.
  • Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rock sand paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924.
  • Fedo, C.M., Eriksson, K.A. and Krogstad, E.J., 1996. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1764.
  • Fedo, C.M., Young, G.M. and Nesbitt, H.W., 1997. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian Research, 86, 201–223.
  • Fu X, Wang J, Chen W, Feng X, Wang D, Song C, Zeng S (2016) Elemental geochemistry of the early Jurassic black shales in the Qiangtang Basin, eastern Tethys: constraints for palaeoenvironment conditions. Geological Journal 51: 443–454
  • Goldich, S.S., 1938. A study in rock-weathering. Journal of Geology, 46, 17–58.
  • Güven, I.H., 1993. 1/100.000 scaled geological map series of Turkey. 57-60, MTA Publication, Ankara.
  • Holland, H.D. and Turekian, K.K., 2010. Geochemistry of Earth Surface Systems. A Derivative of the Treatise on Geochemistry, In: Holland HD, Turekian KK (eds), Academic Press, pp. 227-230.
  • Hu, J., Li, Q., Song, C., Wang, S. and Shen, B., 2017. Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: constraints for paleoenvironment and paleoclimate. Terrestrial, Atmospheric and Oceanic Sciences, 28, 271–282.
  • Jia, J., Liu, Z., Bechtel, A., Strobl, S.A.I. and Sun, P. 2013. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). International Journal of Earth Sciences, 102, 1717–1734.
  • Jian, X., Guan, P., Zhang, W. and Feng, F., 2013. Geochemistry of Mesozoic and Cenozoic Sediments in the Northern Qaidam Basin, Northeastern Tibetan Plateau: Implications for Provenance and Weathering. Chemical Geology, 360-361, 74-88.
  • Johnsson, M.J., 1993. The system controlling the composition of clastic sediments. Processes controlling the composition of clastic sediments, In: Johnsson M.J., Basu A. (eds), Geological Society of America Special Paper, 284, 1–19.
  • Kamp, P.C. and Leake, B.E., 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transaction of the Royal Society of Edinburgh. Earth Sciences, 76, 411-449.
  • Kaotekwar, A.B., Ahmad, S.M., Satyanarayanan, M. and Krishana, A.K., 2019. Geochemical investigations in bulk and clay size fractions from lower Krishna river sediments, southern India: implications of elemental fractionation during weathering, transportation and deposition. Geosciences Journal, 23, 951-960.
  • Karslı, O., Dokuz, A. and Kandemir, R., 2017. Zircon Lu-Hf isotope systematics and U–Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere. Contributions to Mineralogy and Petrology, 172, 31.
  • Kaygusuz, A., Arslan, M., Siebel, W. and Şen, C., 2011. Geochemical and Sr–Nd isotopic characteristics of post-collisional calc-alkaline volcanics in the eastern Pontides (NE Turkey). Turkish Journal of Earth Sciences, 20, 137–159.
  • Kaygusuz, A., Arslan, M., Siebel,W., Sipahi, F. and İlbeyli, N., 2012. Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey. International Geology Review, 1776–1800.
  • Kaygusuz, A., Arslan, M., Sipahi, F. and Temizel, İ., 2016. U-Pb zircon chronology and petrogenesis of Carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic magmatism and geodynamic evolution. Gondwana Research, 39, 327–346.
  • Kessarkar, P.M., Rao, V.P. and Shynu, R., 2010. The nature and distribution of particulate matter in the Mandovi estuary, central West coast of India. Estuarine, Coastal and Shelf Science, 3, 30–44.
  • Lerman, A., 1978. Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York. Martin, J.M. and Meybeck, M., 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.
  • McLennan, S.M., 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy Geochemistry, 21, 169-200.
  • McLennan, S.M. and Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.
  • McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Processes Controlling the Composition of Clastic Sediments, In: Johnsson, M.J. and Basu, A. (eds), Geol. Soc. Am. Spec. Pub., 284, pp. 21-40.
  • Meng, Q., Liu, Z., Bruch, A.A., Liu, R. and Hu, F., 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. Journal of Asian Earth Science, 45, 95–105.
  • Milliman, J.D. and Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91, 1–21.
  • Nesbitt, H.W., 1979. Mobility and fractionation of REE during weathering of granodiorite. Nature, 279, 206–210.
  • Nesbitt, H.W., Markovics, G. and Price, R.C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta, 44, 1659–1666.
  • Nesbitt, H.W. and Wilson, R.E., 1992. Recent chemical weathering of basalts. American Journal of Science, 292, 740–777.
  • Nesbitt, H.W. and Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.
  • Nesbitt, H.W. and Young, G.M., 1984. Predictions of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmo. Acta, 48, 1523-1534.
  • Parker, A., 1970. An index of weathering for silicate rocks. Geological Magazine, 107, 501-504.
  • Piper, D.Z.,1974. Rare earth elements in the sedimentary cycle: a summary. Chemical Geology, 14, 285–304.
  • Roddaz, M., Said, A., Guillot, S., Antoine, P.O., Montel, J-M., Martin, F. and Darrozes, J., 2011. Provenance of Cenozoic sedimentary rocks from the Sulaiman Fold and Thrust Belt, Pakistan: Implications for the Palaeogeography of the Indus Drainage System. Journal of Geology Society, 168, 499–516.
  • Roser, B.P. and Korsch, R.J., 1986. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol, 94, 635–650.
  • Saydam, Eker, C. and Korkmaz, S., 2011. Mineralogy and whole rock geochemistry of late Cretaceous sandstones from the eastern Pontides (NE Turkey). Neues Jahrbuch Für Mineralogy-Abhandlungen, 188 (3), 235-256.
  • Saydam, Eker, Ç., 2017. Geochemical and isotopic characteristics of stream and terrace sediments of the Harsit Stream, NE Turkey. Geochemistry: Exploration, Environment, Analysis, 17 (4), 279-296.
  • Saydam, Eker, Ç. and Demirkol, Kiliç, E., 2018. Geochemistry of Çoruh River bed sediments in NE Turkey: Implications in weathering-sedimentary cycle, provenance, and metal pollution. Geochemistry International, 56 (6), 579-600.
  • Schoenborn, W.A. and Fedo, C.M., 2011. Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California. Chemical Geology, 285, 231–255.
  • Sensarma, S., Rajamani, V. and Tripathi, J.K., 2008. Petrography and geochemical characteristics of the sediments of the small River Hemavati, southern India: implications for provenance and weathering processes. Sedimentary Geology, 205, 111–125.
  • Taylor, S.R. and McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Oxford, Blackwell Scientific Publishing.
  • Topuz, G., Altherr, R., Kalt, A., Satır, M., Werner, O. and Schwarz, W., 2004. Aluminous granulites from the Pulur complex, NE Turkey: a case of partial melting, efficient melt extraction and crystallization. Lithos, 72, 183–207.
  • Topuz, G., Altherr, R., Siebel, W., Schwarz, W., Zack, T., Hasözbek, A., Barth, M., Satır, M. and Şen, C., 2010. Carboniferous High-potassium I-type Granitoid Magmatism in the Eastern Pontides:The Gümüşhane Pluton (NE Turkey). Lithos, 116, 92-110.
  • Vd’ačný, M., Madzin, J. and Plašienka, D., 2019. Geochemical characteristics of the Upper Cretaceous to Lower Eocene sedimentary rocks from the Pieniny Klippen Belt (Western Carpathians, Slovakia): implications for tectonic setting, paleoenvironment and paleoclimate. Geosciences Journal, 23 (5), 731−745.
  • Wang, Y., Long, X., Wilde, A.A., Xu, H., Sun, M. and Xiao, W., 2014. Provenance of Early Paleozoic metasediments in the central Chinese Altai: Implication for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt. Lithos, 210-211, 57-68.
  • Wang, Z., Fu, X., Feng, X., Song, C., Wang, D., Chen, W., and Zeng, S., 2017. Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate. Geological Journal, 52, 282–297.
  • White, A.F., Bullen, T.D., Schulz, M.S., Blum, A.E., Huntington, T.G. and Peters, N.E., 2001. Differential rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta, 65, 847–869.
  • Wronkiewicz, D.J. and Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: sourc-area weathering and provenance. Geochimica et Cosmochimica Acta, 53, 1537-1549.
  • Young, G.M., 1999. Some aspects of the geochemistry, provenance and palaeoclimatology of the Torridonian of NW Scotland. J. Geol. Soc. Lond., 156, 1097–1111.
  • Zhao, Z., Zhao, J., Wang, H., Liao, J., Liu, C., 2007. Distribution characteristics and applications of trace elements in Junggar Basin (in Chinese with English abstract). Natural Gas Exploration and Development, 30, 30–33.
  • Zhou, L., Friis, H., Yang, T. and Nielsen, A.N. 2017. Geochemical interpretation of the Precambrian basement and overlying Cambrian sandstone on Bornholm, Denmark: Implications for the weathering history. Lithos, 286-287, 369-387.