Total antioxidant, total oxidant and oxidative stress levels in free-living birds

Total antioxidant, total oxidant and oxidative stress levels in free-living birds

Antioxidants provide protection against free radicals formed as a result of increased metabolism in living organisms and the damage these radicals cause to the cell. For this reason, determining the antioxidant levels can help eco-physiologists in the field in understanding the physiological state of the animal at that moment and in conservation biology. In this study, TAC, TOC and OSI values of 12 Long-legged Buzzards (Buteo rufinus), 7 Common Buzzards (Buteo buteo) and 6 Golden Eagles (Aquila chrysaetos), 15 Grey Herons (Ardea cinerea), 7 Eurasian Eagle Owls (Bubo bubo) brought to rehabilitation centre with injuries due to various reasons were examined. First of all, physical examinations of the birds brought to the centre were made. They were then kept in species-specific rooms until recovery. After they were rehabilitated, blood was taken from the birds 1-2 days before they were released into the nature. As a result of blood analysis, TOC and OSI values were found to be high in Eurasian Eagle Owl, Golden Eagle, Long-legged Buzzard and Common Buzzards which were brought with a diagnosis of gunshot wounds, soft tissue trauma, femur or wing fractures. Although these birds were rehabilitated, the reason why TOC and OSI values were high in the individuals brought with these diagnoses may be the trauma experienced by these free-living birds and their subsequent detention in captivity. After the birds were treated and rehabilitated, they were released back to nature in habitats specific to each species.


  • 1. Abbasi, N. A., Arukwe, A., Jaspers, V. L. B., Eulaers, I., Mennilod, E., Ibor, O. R., Frantz, A., Covaci, A., & Malik, R. N. (2017). Oxidative stress responses in relationship to persistent organic pollutant levels in feathers and blood of two predatory bird species from Pakistan. Science of the Total Environment, 580, 26-33.
  • 2. Acke, E., Midwinter, A. C., Lawrence, K., Gordon, S. J. G., Moore, S., Rasiah, I., Steward, K., French, N., & Walker, A. (2015). Prevalence of Streptococcus dysgalactiae subsp. equisimilis and S. equi subsp. zooepidemicus in a sample of healthy dogs cats and horses. New Zealand Veterinary Journal, 63, 265-271.
  • 3. Allam, N. M., & Lemcke, R. M. (1975). Mycoplasmas isolated from the respiratory tract of horses. The Journal of Hygiene, 74, 385-407.
  • 4. Arnold, K. E., Larcombe, S. D., Ducaroir, L., & Alexander, L. (2010). Antioxidant status, flight performance and sexual signalling in wild-type parrots. Behavioral Ecology and Sociobiology, 64, 1857-1866.
  • 5. Black, P. A., David, D. V. M., & Horne, L. A. (2011). Hematologic parameters in raptor species in a rehabilitation setting before release. Journal of Avian Medicine and Surgery, 25(3), 192-198.
  • 6. Bize, P., Cotting, S., Devevey, G., Rooyen, J., Lalubin, F., Glaizot, O., & Christe, P. (2014). Senescence in cell oxidative status in two bird species with contrasting life expectancy. Oecologia, 174, 1097-1105. 7. Campbell, T. W. (2012). Hematology of birds. In M. A. Thrall, G. Weiser, R. W. Allison & T. W. Campbell (Eds.), Veterinary hematology and clinical chemistry (2nd ed., pp 238-276). Wiley-Blackwell.
  • 8. Casagrande, S., Dell'Omo, G., Costantini, D., Tagliavini, J., & Groothuis, T. (2011). Variation of a carotenoid-based trait in relation to oxidative stress and endocrine status during the breeding season in the Eurasian kestrel: A multi-factorial study. Comparative Biochemistry and Physiology Part A, 160, 16-26.
  • 9. Chaplin, S. B., Mueller, L. R., Degeneres, L. A. (1993). Physiological assessment of rehabilitated raptors prior to release. In P. T. Redig, J. E. Cooper, J. D. Remple, & D. B. Hunter (Eds.), Raptor Bio-medicine (pp 167-173). University of Minnesota Press.
  • 10. Cohen, A. A., Hau, M., & Wikelski, M. (2008). Stress, metabolism, and antioxidants in two wild passerine bird species. Physiological and Biochemical Zoology, 81(4), 463-472. 10.1086/589548
  • 11. Coles, B. (2007). in: Essentials of Avian Medicine and Surgery, Nursing and after care, Ed. by B.H. Coles, (3rd ed.). Blackwell Publishing Ltd.
  • 12. Cooper, J. E. (1972). Some haematological data for birds of prey. Raptor Research, 6, 133-136.
  • 13. Costantini, D., & Dell’Omo, G. (2006). Environmental and genetic components of oxidative stress in wild kestrel nestlings (Falco tinnunculus). Journal of Comparative Physiology B, 176, 575-579.
  • 14. Costantini, D., Casagrande, S., Filippis, S., Brambilla, G., Fanfani, A., Tagliavini, J., & Dell’Omo, G. (2006). Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus). Journal of Comparative Physiology B, 176, 329-337.
  • 15. Costantini, D., Coluzza, C., Fanfani, A., & Dell’Omo, G. (2007). Effects of carotenoid supplementation on colour expression, oxidative stress and body mass in rehabilitated captive adult kestrels (Falco tinnunculus). Journal of Comparative Physiology B, 177, 723-731. 10.1007/s00360-007-0169-0
  • 16. Costantini, D., & Verhulst, S. (2009). Does high antioxidant capacity indicate low oxidative stress? Functional Ecology, 23, 506–509.
  • 17. Cram, D. L., Blount, J. D., York, J. E., & Young, A. J. (2015). Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress. PlosOne, March: 1-10.
  • 18. Desmarchelier, M., Santamaria-Bouvier, A., Fitzgérald, G., & Lai, S. (2010). Mortality and morbidity associated with gunshot in raptorial birds from the province of Quebec: 1986 to 2007. Canadian Veterinary Journal, 51,70-74.
  • 19. Espín, S., Martínez-López, E., Jiménez, P., María-Mojica, P., & García-Fernández, A. J. (2014). Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Environmental Research, 129, 59-68.
  • 20. Fernie, K. J., & Bird, D. M. (2001). Evidence of oxidative stress in American Kestrels exposed to electromagnetic fields. Environmental Research, Section A, 86, 198-207.
  • 21. Fernie, K. J., & Reynolds, S. J. (2005). The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: a review. Journal of Toxicology and Environmental Health, 8(2), 127-140,
  • 22. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239-247. 10.1038/35041687
  • 23. Fischer C. P., & Romero L. M. (2018). Chronic captivity stress in wild animals is highly species-specific. Conservation Physiology, 7, 1-38.
  • 24. Fix, A. S., & Barrows, S. Z. (1990). Raptors rehabilitted in Iowa during 1986 and 1987: respospective study. Journal of Wildlife Diseases, 26(1), 18-21.
  • 25. Malik, A., & Valentine, A. (2018). Pain in birds: a review for veterinary nurses. Veterinary Nursing Journal, 33(1), 11-25.
  • 26. Mander, C., Adams, L., & Riley, A. (2003). Wild City Neighbours: a guide to native bird rehabilitation. New Zealand Department of Conservation.
  • 27. Mis, L., Mert, H., Comba, A., Comba, B., Söğütlü, İ. D., Irak, K., & Mert, N. (2018). Some mineral substance, oxidative stress and total antioxidant levels in Norduz and Morkaraman sheep. Van Veterinary Journal, 29(3), 131-134.
  • 28. Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102, 262-302.
  • 29. Redig, P. T. (1978). Raptor rehabilitation: diagnosis, prognosis and moral issues. In T. A. Geer (Ed.). Bird of prey management techniques (pp 29-41). British Falconer's Club.
  • 30. Şahin, Ö. K., Aksoy, M. Ç., Uz, E., & Dağdeviren, B. H. (2015). Investigation of the effects of resveratrol on total oxidant/antioxidant capacity on experimental cigarette smoking model. SDÜ Sağlık Bilimleri Dergisi, 6(1), 10-14.
  • 31. Vágási, C. I., Vincze, O., Pătraș, L., Osváth, G., Pénzes, J., Haussmann, M. F., Barta, Z., & Pap, P. L. (2019). Longevity and life history coevolve with oxidative stress in birds. Functional Ecology, 33, 152-161.
  • 32. Wang, C., Zhao, F., Li, Z., Jin, X., Chen, X., Geng, Z., Hu, H., & Zhang, C. (2021). Effects of resveratrol on growth performance, intestinal development, and antioxidant status of broilers under heat stress. Animals, 11(1427), 2-10.
  • 33. Yaprakci, M. V., Ciğerci, İ. H., Ali, M. M., & Kabu, M. (2016). DNA damage, total antioxidant and oxidant status in gunshot wounded Wild Falcons. Pakistan Journal of Zoology, 48(5), 1417-1421.


APA Sönmez, E. , Gürsoy Ergen, A. , Çenesiz, S. , Gökçeoğlu, A. , Öğün, M. , Uzlu, E. & Çenesiz, M. (2023). Total antioxidant, total oxidant and oxidative stress levels in free-living birds . Veterinary Journal of Mehmet Akif Ersoy University , 8 (2) , 74-82 . DOI: 10.24880/maeuvfd.1226362
Veterinary Journal of Mehmet Akif Ersoy University
  • Yayıncı: Burdur Mehmet Akif Ersoy Üniversitesi


Sayıdaki Diğer Makaleler

Intense exercise stress may trigger Corynebacterium kutscheri infection in Sprague-Dawley rats

Emrah İPEK, Erkmen Tuğrul EPİKMEN, Çağatay NUHAY, Recai TUNCA

Investigation of ectoparasites in budgerigar and canaries in Burdur city of Turkey


Morphological Investigation of the Veins and Bile Vessels of Rabbit Liver


Detection of Methicillin-resistant Staphylococcus aureus (MRSA) resistant to vancomycin and linezolid in bulk tank milk by E-test method


Total antioxidant, total oxidant and oxidative stress levels in free-living birds


Etiological Examination of Neonatal Calf Diarrhea Cases Detected in Burdur Region

Reyda KIYICI, Nuri MAMAK, Şima ŞAHİNDURAN, Süleyman ŞENSOY, Hasan Altan AKKAN, Mehmet KARACA, Ramazan YILDIZ, Yavuz MUSABEŞEOĞLU, Halil İbrahim GÖKÇE

A different treatment approach for Bovine papillomavirus in an Arabian horse

Yakup Sinan ORTA, Mehmet KALE, Sibel HASIRCIOĞLU, Yakup YILDIRIM, Özlem ÖZMEN, Kamil ATLI

Effect of Vitamin C on the Immune System in Cattle Immunized With Blackleg Vaccine


Total Phenolic Content, Antibacterial and Antiradical Properties of Bee Bread from Turkey

Nilay KEYVAN, Melike Sultan USLUER, Muhammet Mükerrem KAYA, Hatice Ahu KAHRAMAN, Hidayet TUTUN, Erhan KEYVAN

Decreased gene expression of RIPK1 and RIPK3, necroptosis players, in calves with sepsis