Çevresel Sürdürülebilirlik için Konutların Isıtma Enerji Tüketimlerine Bağlı Emisyonların Yaşam Çevrimi Çevresel Etki Değerlendirmesi ile İncelenmesi

Çalışmada, binalarda Türk yalıtım standardı olan TS 825’e göre beş iklim bölgesinde bulunan beş farklı şehrindeki binaların enerji tüketimi ve buna bağlı farklı emisyon ve kirletici türlerinin yaşam çevrimi çevresel etki değerlendirmesi ile incelenmiştir. Çalışmada iklim bölgeleri için, birinci iklim bölgesini temsilen Antalya, ikinci iklim bölgesini temsilen Balıkesir, üçüncü iklim bölgesini temsilen Eskişehir, dördüncü iklim bölgesini temsilen Kayseri ve beşinci iklim bölgesini temsilen Kars şehirleri seçilmiştir. Konutun ısıtılması amacı için enerji kaynağı olarak; doğal gaz, Fuel-oil, LPG, linyit kömürü, kok kömürü, taş kömürü ve biokütle (odun) kabul edilmiştir. Çalışmada; ReCiPe orta nokta (midpoint) çevresel hasar ve etki kategorilerine göre on bir adet global ısınmaya etki eden madde ve on üç adet ozonu incelten madde etkisi olarak toplam yirmi dört adet madde için incelemeler yapılmıştır. Son olarak on ve yirmi yıllık ömürler için seçilen şehirler, yakıtlar ve emisyon türlerine bağlı yaşam çevrimi emisyon etkisine göre değerlendirmeler yapılmıştır. Sonuç olarak, emisyon ve kirletici miktarlarına göre, global ısınmayı etkileyen maddelerden SF6 için 29138089840 ton ve ozon tabakasını incelten maddelerden CFC-115 için 8929126304 ton ile Linyit kömüründe en yüksek değerler hesaplanmıştır. Emisyon ve kirletici potansiyeli en yüksek kömür yakıtlardan linyit kömüründe tespit edilmiştir. En düşük ise doğal gaz yakıtı için bulunmuştur.

Investigation of Emissions due to Energy Consumption of Buildings for Environmental Sustainability by Lifecycle and Environmental Impact Assessment

In the study, the energy consumption of buildings in five different cities in five climate zones according to TS 825, which is the Turkish insulation standard in buildings, and the life cycle of varying emission and pollutant types were investigated by an environmental impact assessment. In the study, Antalya from the first climate zone, Balıkesir from the second climate zone, Eskişehir from the third climate zone, Kayseri from the fourth climate zone and Kars from the fifth climate zone were selected for these climate zones. As energy sources for heating; natural gas, fuel oil, LPG, lignite coal, coke, hard coal and wood were accepted. According to ReCiPe midpoint environmental damage and impact categories were made for a total of twenty-four substances as the effect of eleven substances that affect global warming as emissions and thirteen substances that deplete ozone. Finally, evaluations were made according to the life-cycle emission effect depending on the selected cities, fuels and emission types for the ten and twenty-year lifetimes. As a result, the highest values were calculated for lignite coal, with 29138089840 ton for SF6, one of the substances that affect global warming, and 8929126304 ton for CFC-115, one of the substances that deplete the ozone layer, according to the amount of emissions and pollutants. The highest emission and pollutant potential was determined in lignite coal that one of the coal fuels. The lowest was found for natural gas fuel.

___

  • [1] Durmayaz, A, and Kadıoğlu, M. (2003). Heating energy requirements and fuel consumptions in the biggest city centers of Turkey. Energy Conversion and Management 44, 7, 1177–1192.
  • [2] Heinonen, J., Saynajoki, A., Junnonen, J. M., Poyry, A. and Junnila, S. (2016). Pre-use phase LCA of a multi-story residential building: Can greenhouse gas emissions be used as a more general environmental performance indicator?. Building and Environment 95, 116-125.
  • [3] Chàfer, M., Pérez, G., Coma, J. and Cabez,a L. F. (2021). A comparative life cycle assessment between green walls and green facades in the Mediterranean continental climate. Energy and Buildings, 249, 111236.
  • [4] Alyaseri, I. and Zhou, J.,”Towards better environmental performance of waste water sludge treatment using endpoint approach in LCA methodology”. Heliyon, 3, 3, 00268. 2017.
  • [5] Emami, N., Heinonen, J., Marteinsson, B., Säynäjoki, A., Junnonen, J. M., Laine, J. and Junnila, S. (2019). A Life Cycle Assessment of Two Residential Buildings Using Two Different LCA Database-Software Combinations: Recognizing Uniformities and Inconsistencies. Buildings, 9, 1, 20.
  • [6] Osman A. and Ries R. (2007). Life Cycle Assessment of Electrical and Thermal Energy Systems for Commercial Buildings. The International Journal of Life Cycle Assessment, 12, 5, 308–316.
  • [7] Chatzisymeon, E., Foteinis, S. and Borthwick A. G. L. (2017). Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. The International Journal of Life Cycle Assessment, 22, 896–908.
  • [8] Lecler, A., Hauschild, M. Z. and Wood, R. (2020). Laurent A, Building national emission inventories for the energy sector: Implications for life cycle assessment and nations environmental footprinting. Science of the Total Environment, 708, 135119.
  • [9] Braulio-Gonzalo, M. and Bovea, M. D.,”Environmental and cost performance of building’s envelope insulationmaterials to reduce energy demand: Thickness optimisation”. Energy and Buildings, 150, 527–545. 2017.
  • [10] Chau, C. K., Leung, T. M. and Ng W. Y., “A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings”. Applied Energy, 143, 395–413. 2015.
  • [11] Louis, J. N. and Pongrácz, E. (2017). Life cycle impact assessment of home energy management systems (HEMS) using dynamic emissions factors for electricity in Finland. Environmental Impact Assessment Review, 67, 109–116.
  • [12] Slorach, P. C. and Stamford, L. (2021). Net zero in the heating sector: Technological options and environmental sustainability from now to 2050. Energy Conversion and Management, 230, 113838.
  • [13] Nomura, N., Inaba, A., Tonooka, Y. and Akai, M. (2001). Life-cycle emission of oxidic gases from power- generation systems. Applied Energy 68, 2, 215-227.
  • [14] Kabakian, V. and McManus, M. C. (2015). Harajli H, Attributional life cycle assessment of mounted 1.8 kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system. Applied Energy, 154, 428–437.
  • [15] McCallum, C. S., Kumar, N., Curry, R., McBride, K. and Doran, J. (2021). Renewable electricity generation for off grid remote communities; Life Cycle Assessment Study in Alaska, USA, Applied Energy, 299,117325.
  • [16] Alvanchi A., Bajalan Z. and Iravani P., “Emission assessment of alternative dam structure types, a novel approach to consider in new dam Project”. Construction Innovation, 21, 2, 203-217. 2021.
  • [17] Neri, E., Cespi, D., Setti, L., Gombi, E. and Bernardi, E. (2016). Vassura I,, Passarini F,, Biomass Residues to Renewable Energy: A Life Cycle Perspective Applied at a Local Scale. Energies, 9, 11, 922.
  • [18] Türkiye İstatistik Kurumu 2020 yılı Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210 (Erişim Tarihi: 08.01.2022)
  • [19] TS 825. Binalarda Isı Yalıtımı, Türk Standardı, Aralık 2013.
  • [20] Altun M., Akgul C. M. and Akcamete A., “Effect of envelope insulation on building heating energy requirement, cost and carbon footprint from a life-cycle perspective”. Journal of the Faculty of Engineering and Architecture of Gazi University, 35,1, 147-163. 2020.
  • [21] TS 2164. Kalorifer Tesisatı Projelendirme Kuralları. Türk Standardı, Ekim 1983.
  • [22] Dombaycı, Ö. A., Gölcü, M. and Pancar, Y. (2006). Optimization of insulation thickness for external walls using different energy-sources. Appled Energy, 83, 9, 921-928.
  • [23] Hepbaşlı A. (2008). A study on estimating the energetic and exergetic prices of various residential energy sources. Energy and Buildings, 40, 3, 308-315.
  • [24] The Intergovernmental Panel on Climate Change (IPCC) - National Greenhouse Gas Inventories Programme https://www.ipccnggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf (Erişim Tarihi: 07.05.2022)
  • [25] LCIA: the ReCiPe model https://www.rivm.nl/en/life-cycle-assessment-lca/recipe (Erişim Tarihi: 07.05.2022)
  • [26] United States Environmental Protection Agency (EPA) Ozone-Depleting Substances https://www.epa.gov/ozone-layer-protection/ozone-depleting-substances#tab-2 (Erişim Tarihi: 08.05.2022)
  • [27] United Nations Climate Change (UNFCCC) Global Warming Potentials (IPCC Second Assessment Report) https://unfccc,int/process/transparency-and-reporting/greenhouse-gas-data/greenhouse-gas-data-unfccc/global- warming-potentials (Erişim Tarihi: 08.05.2022)