Taşkınların Ekonomik Zararlarının Değerlendirilmesi (Samsun-Mert Irmağı Havzası)

Taşkın nehir yatağında bulunan su miktarının çeşitli sebeplerle kesitine sığamayarak, çevresindeki arazilere, yerleşim yerlerine ve canlılara zarar verdiği doğal bir afettir. Yaşamımızı etkileyen taşkınların maddi ve manevi zararlarını azaltmak için taşkını afet haline getiren mekanizmasının iyi bilinmesi ve taşkın meydana gelmeden önce önlemlerin alınması gerekmektedir. Taşkınlar meydana gelmeden önce taşkınlara eğilimli alanların ve bu alanlara ait ekonomik kayıpların belirlenmesi taşkın yönetim planları için önemlidir. Taşkın yönetiminde en önemli adımlardan biri taşkın modellemesidir. Bu modellemede taşkının yayılım alanı, su yüksekliği, su hızı ve ekonomik kayıpları belirlenebilir. Bu çalışmada, Orta Karadeniz Bölgesi’nde yer alan Mert Irmağı Havzası’nın 2 boyutlu taşkın modellemesi yapılmıştır. Ülkemizde, taşkınlar sonucunda oluşabilecek ekonomik kayıpları belirlemede kullanılan, hasar fonksiyonları bulunmamaktadır. Bu çalışma ile birçok Avrupa ülkesinde kullanılan yöntemler kullanılarak tahmini ekonomik kayıpları elde edilmiştir. Taşkın modellemesinde 50, 100, 500 ve 1000 yıllık tekerrür süresine sahip debiler kullanılmıştır. Bu debiler HEC-RAS programıyla modellenmiştir. Modellemeler sonucunda ilgili taşkın tekerrür debilerinin çalışma alanında 4 ile 6 km² alanda yayıldığı, 150-500 milyon TL tahmini hasar verebileceği ve 9 ile 12 bin insanı etkilenebileceği tespit edilmiştir. Bu tahminler bakanlık raporları ile karşılaştırılarak kullanılan hasar fonksiyonlarının ülkemize uygunluğu araştırılmıştır.

Evaluation of Economic Damages of Floods (Samsun-Mert River Basin)

Flood is a natural disaster, which damages the surrounding lands, settlements, infrastructure facilities and living things by not fitting in the existing amount of water in the stream bed cross section for several reasons. To reduce the pecuniary and non-pecuniary damages of the floods affecting our lives, the mechanism of the flood disaster must be well known, and measures should be taken before flooding. Flood management plans, which are used to determine economic losses of floods as well as flood risk. In this study, two-dimensional flood model of the Mert River Basin, located in the Central Black Sea Region, was investigated. In our country, there are no damage functions used in determining the economic losses that may occur as a result of floods. This study estimated flood risk and economic losses using damage curves models from European countries. Hydraulic model was created by using with HEC-RAS for 50, 100, 500 and 1000 years return period. The study exposes those flows spread over 4 to 6 km² area, cause an estimated damage of 150-500 million TL, affect 9 and 12 thousand people. These estimates and comparisons show applicability of the damage functions suggested.

___

  • Anilan, T., Yüksek, Ö., Kankal, M. (2016), Regional Flood Frequency Analysis of Eastern Black Sea Basin Based on L-Moments. UCTEA Tecnical. Journal, 451, 7403–7427.
  • Alho, P., Aaltonen, J., Comparing A (2008), 1D Hydraulic Model with A 2D Hydraulic Model for The Simulation of Extreme Glacial Outburst Floods. Hydrol. Process., 22(10), 1537–1547.
  • Anonim, 2014. Guidelines for the preparation of flood risk management plans, capacity building for the implementation of the flood directive EU twinning project. General Directorate of Water Management, Ankara. http://taskinyonetimi.suyonetimi.gov.tr/ taskin/ Files/ Outputs/TRYP_Kilavuzlar.pdf Yayın tarihi 2014. Erişim tarihi Mayıs 11, 2019.
  • Bakanlık (2020) Yeşilırmak Basin Flood Management Plan Available online: https://www.tarimorman.gov.tr/SYGM/Belgeler/Taşkın Yönetim Planları/1) YESILIRMAK HAVZASI TAŞKIN YÖNETIM PLANI.pdf Yayın tarihi 2020. Erişim tarihi Mayıs 11, 2020.
  • Bates, P., De Roo, A.P., (2000), A simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol., 236(1-2), 54–77.
  • Bayazıt, M. (1981), Hidrolojide İstatistik Yöntemler; İstanbul Teknik Üniversitesi matbaası, İstanbul, 1981.
  • Beden, N. (2019) Cevizdere havzasının sayısal modelleme sistemlerine dayalı taşkın analizi ve taşkın zararlarının değerlendirilmesi, Doktora Tezi, Ondokuzmayıs Üniversitesi. Fen Bilimleri Enstitüsü, Samsun.
  • Beden, N., Keskin, A.Ü., (2020), Flood Hazard Assessment of A Flood-Prone Intensively Urbanized Area - A Case Study From Samsun Province, Geofizika, 37(1), 1–31.
  • Beden, N., Ülke Keskin, A. (2021), Flood Map Production and Evaluation Of Flood Risks in Situations of Insufficient Flow Data. Nat. Hazards 105, 2381–2408.
  • Canik Population (2020), https://www.nufusu.com/ilce/canik_samsun-nufusu Yayın tarihi 2020. Erişim tarihi Mayıs 15, 2020.
  • Cesur, D. (2007), GIS As An Information Technology Framework for Water Modeling. J. Hydroinformatics, 9(2), 123–134.
  • Cook, A., Merwade, V. (2009), Effect of Topographic Data , Geometric Configuration and Modeling Approach on Flood Inundation Mapping. J. Hydrol., 377(1), 131–142.
  • de Moel, H.; Aerts, J.C.J.H., (2011), Effect of Uncertainty in Land Use, Damage Models and Inundation Depth on Flood Damage Estimates. Nat. Hazards, 58 (1), 407–425.
  • Demir, V. (2020), Samsun Mert havzasında bir ve iki boyutlu modeller ile taşkın alanlarının belirlenmesi, Doktora Tezi, Ondokuzmayıs Üniversitesi. Lisansüstü Eğitim Enstitüsü, Samsun.
  • Demir, V., Ülke Keskin A., (2020), Height Modeling with Artificial Neural Networks (Samsun-Mert River Basin). Gazi J. Eng. Sci., 6(1), 54–61.
  • Demir, V., Kisi, O. (2016), Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey. Adv. Meteorol., 2016.
  • Demir, V., Ülke Keskin, A., (2021), Flood flow calculation and flood modeling in rivers that do not have enough flow measurement (Samsun, Mert River sample). Geomatik, 7(2), 149–162.
  • Demir, V., Ülke Keskin, A., (2020), Obtaining the Manning Roughness with Terrestrial-Remote Sensing Technique and Flood Modeling using FLO-2D, a case study Samsun from Turkey. Geofizika 37(2), 131-156.
  • Demir, V., Ülke Keskin A., (2019), Determination of Manning Roughness Coefficient by Cowan Method and Remote Sensing. Gazi J. Eng. Sci. 5(2), 167–177.
  • Hooijer, A., Klijn, F., Pedroli, G.B.M., Van Os, A.G. (2004), Towards sustainable flood risk management in the Rhine and Meuse river basins: synopsis of the findings of IRMA-SPONGE. River Res. Appl., 20(3), 343–357.
  • Horritt, M.S., Bates, P.D., (2002), Evaluation of 1D and 2D Numerical Models for Predicting River Flood Inundation. J. Hydrol., 268(1-4), 87–99.
  • Huizinga HJ (2007), Flood damage functions for EU member states. Technical Report, HKV Consultants. Implemented in the framework of the contract #382441-F1SC awarded by the European CommissionJoint Research Centre, 2007.
  • Huthoff, F., Remo, J.W.F., (2015), Pinter, N., Improving Flood Preparedness Using Hydrodynamic Levee-Breach and Inundation Modelling: Middle Mississippi River, USA. J. Flood Risk Manag., 8(1), 2–18.
  • ICBR (2001), Atlas van het overstromingsgevaar en mogelijke schade bij extreem hoogwater van de Rijn. Internationale Commissie ter Bescherming van de Rijn (ICBR), Koblenz, 2001.
  • İlkadım Population (2020), https://www.nufusu.com/ilce/ilkadim_samsun-nufusu Yayın tarihi 2020. Erişim tarihi Mayıs 15, 2020. Kamboh, S.A., Sarbini, I.N., Labadin, J., Eze, M.O., (2016), Simulation of 2D Saint-Venant equations in open channel by using MATLAB. J. IT Asia, 5(1), 15–22.
  • Leedal, D., Neal, J., Beven, K., Young, P., Bates, P. (2010), Visualization Approaches for Communicating Real-Time Flood Forecasting Level And Inundation Information. J. Flood Risk Manag., 3(2), 140–150.
  • Merz, B., Thieken, A. H., Gocht, M. (2007), Flood risk mapping at the local scale: Concepts and challenges. - In: Beguim, S., Stive, M., Hall, J. W. (Eds.), Flood Risk Management in Europe: Innovation in Policy and Practice, (Advances in natural and technological hazards research; 25), Springer, (2007), 231-251.
  • Petrow, T., Thieken, A.H., Kreibich, H., Merz, B., Bahlburg, C.H. (2006), Improvements on Flood Alleviation in Germany: Lessons Learned from the Elbe Flood in August 2002. Environ. Manage., 38(5), 717–732.
  • Pistrika, A.K., Jonkman, S.N., (2010), Damage to residential buildings due to flooding of New Orleans after hurricane Katrina. Nat. Hazards, 54(2), 413–434.
  • Quirogaa, V.M., Kurea, S., Udoa, K., Manoa, A. (2016), Application of 2D Numerical Simulation for The Analysis of The February 2014 Bolivian Amazonia Flood: Application of The New HEC-RAS version 5, Ribagua, 3, 25–33.
  • Rubinato, M., Nichols, A., Peng, Y., Zhang, J., Lashford, C., Cai, Y.,Lin, P., Tait, S. (2019), Urban and River Flooding: Comparison of Flood Risk Management Approaches in The UK and China and An Assessment of Future Knowledge Needs. Water Sci. Eng., 12(4), 274–283.
  • Serencam, U. (2013), Taşkin zararlari ve zarar görebilirlik analizi: Trabzon değirmendere sanayi mahallesi örneği, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen BilimlerEnstitüsü, Trabzon.
  • Taş, E., İçağa, Y., Zorluer, İ., (2016), Constitution of Flood Inundation Maps and Flood Damage Analysis: A Case Study of Akarcay Afyon Subbasin, Afyon Kocatepe University Journal of Science and Engineering, 16, 711–721.
  • Ulke, A., Beden, N., Demir, V., Menek, N. (2017), Numerical modeling of Samsun Mert River floods. EWRA Publ., 57, 27–34.
  • Uslu, G., Sesli, A, F., Uzun, B., Yılmazsoy, B., Akdemir, Ç., Güler, S. (2018), Determination of Flood Hazard Maps with Geographıc Informatıon Systems. Journal of Urban Culture and Management, 11(4), 545–558.
  • Van Eck N.V., Kok M. (2001), Standaard Methode Schade en Slachtofers Als Gevolg Van Overstromingen. Dienst Wegen Waterbouwkunde. Ministerie van Rijkswaterstaat, Netherlands. https://puc.overheid.nl/ rijkswaterstaat/doc/PUC_20427_31/, 2001.
  • Vozinaki, A.E.K., Morianou, G.G., Alexakis, D.D., Tsanis, I.K. (2017), Comparing 1D and Combined 1D/2D Hydraulic Simulations Using High-Resolution Topographic Data: A Case Study of The Koiliaris Basin, Greece. Hydrol. Sci. J., 62(4), 642–656.
  • Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V., (2012), Climate Change Impact Assessment on Urban Rainfall Extremes and Urban Drainage: Methods And Shortcomings. Atmos. Res., 103, 106–118.
  • Zerger, A., Wealands, S., (2004), Beyond Modelling: Linking Models with GIS for Flood Risk Management. Nat. Hazards, 33, 191–208.