Şebeke Seviyesinde Enerji Depolama Uygulamaları için Uygun Teknoloji Seçimi Metodolojisi Önerilmesi

Klasik şebeke yapısında enerji üretimi ve tüketimi eş zamanlı olduğu için üretim, tüketim dengesinin anlık olarak gözetilmesi gereklidir. Özellikle yenilenebilir enerji tesislerinin kesintili üretim profiline sahip olması ve belirli durumlarda üretim yapamaması gibi durumlar yüzünden yenilenebilir enerji kaynaklı üretimin günün genelinde kullanılması için enerji depolama sistemleri için çalışmaları hızlandırmıştır. Enerji depolama sistemleri şebeke genelinde öncelikle araştırma seviyesinde şebekede çeşitli ihtiyaçları gidermek için kullanılması planlanmaktadır. Gerçekleştirilen bu çalışma ile enerji depolama sistemlerinin şebeke seviyesinde uygulamaları açıklanmaya çalışılmış ve bu uygulamalara uygun enerji depolama teknolojisi seçimi için bir metodoloji ortaya konulmaya çalışılmıştır.

Şebeke Seviyesinde Enerji Depolama Uygulamaları için Uygun Teknoloji Seçimi Metodolojisi Önerilmesi

Since energy production and consumption are simultaneous in the classical network structure, the balance of generation and consumption must be taken into consideration instantly. In particular, the fact that renewable energy facilities have an intermittent generation profile and cannot be produced in certain situations has accelerated the studies for energy storage systems to use renewable energy-based generation throughout the day. Energy storage systems are planned to be used throughout the network primarily at the research level to meet various needs in the network. With this study, the applications of energy storage systems at the network level were tried to be explained and a methodology was tried to be presented for the selection of energy storage technology suitable for these applications.

___

  • Amin SM, G. C. (2006). The North American power delivery system: balancing market restructuring and environmental economics with infrastructure security.
  • D. A. Sbordone, L. M. (2016). Reactive Power Control for and Energy Storage System: A Real Implementation in a Micro-Grid. Journal of Network and Computer Applications, vol 59, p. 250 – 263.
  • Denholm P, E. E. (2010). The role of energy storage with renewable electricity generation. National Renewable Energy Laboratory (NREL).
  • K. Spiliotis, S. C. (2016). Utilizing local energy storage for congestion management and investment deferral in distribution networks. 13th International Conference on the European Energy Market (EEM), (s. pp. 1-5). Porto.
  • Kemiwatt. (2020, 12 14). Renewable & Integration. Kemiwatt: https://kemiwatt.com/renewable-integration/ adresinden alındı
  • Koohi-Kamali S, T. V. (2013). mergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew Sustain Energy Rev, 25:135–65. .
  • L. Maeyaert, L. V. (2020). Battery Storage for Ancillary Services in Smart Distribution Grids. Journal of Energy Storage , vol. 30 ISSN 2352-152X.
  • M. Delfanti, D. F. (2014). Distributed Generation Integration in the Electric Grid: Energy Storage System for Frequency Control. Computational Science in Smart Grids and Energy Systems.
  • M. Uddin, M. R. (2018). A review on peak load shaving strategies. Renewable and Sustainable Energy Reviews, vol. 82, Part 3, p 3323-3332.
  • Mohammed, M. F. (2016). Energy Storage Technologies for High-Power Applications. IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 1953-1961.
  • Sreekanth, K. J., Al Foraih, R., Al-Mulla, A., & Abdulrahman, B. (2018). Feasibility Analysis of Energy Storage Technologies in Power Systems for Arid Region. Journal of Energy Resources Technology, 141(1), 011901. doi:10.1115/1.4040931
  • World Energy Council. (2004). Energy End-Use Technologies for the 21st Century.
  • Z. Cheng, J. D. (2018). o Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems. IEEE Industrial Electronics Magazine, vol. 12, no. 1, pp. 6-24.