Küçük Ölçekli Francis Türbini Tasarımı Ve Hesaplamalı Akışkanlar Dinamiği Analizi

Bu çalışmada, küçük ölçekli Francis türbini bileşenlerinin tasarımı ve hesaplamalı akışkanlar dinamiği analizleri gerçekleştirilmiştir. Bovet yöntemi kullanılarak çark kanadı analitik ve ampirik bağıntılar ile tasarlanmıştır. Çark ve ayar kanadı merdiyenel profilleri ANSYS Bladegen V17.0’da oluşturulmuştur. Ağ yapısı ANSYS Turbogrid ile oluşturulmuştur. Salyangozve emme borusu tasarımlarının geometrileri Solidworks 2013’de oluşturulmuştur. Türbin bileşenleri ve tüm türbin için hesaplamalı akışkanlar dinamiği (HAD) analizleri k-ε türbülans modeli kullanılarak yapılmıştır. HAD analizleri kararlı çalışma şartları için gerçekleştirilmiştir. Analizlerin sonucunda basınç dağılımları ve akış hız çizgileri elde edilmiştir. Türbine ait elde edilen verim değeri incelenmiştir. Analitik yöntemler kullanılarak elde edilen verim ile HAD analiz sonuçlarındaki verim karşılaştırıldığında, %2 fark olduğu görülmüştür.

Small Scale Francis Turbine Design And Computational Fluid Dynamics Analyses

In this study, the design and numerical analysis of small scale Francis turbine components were performed. According to the Bovet method, analytical calculations of single blade were performed. Runner and wicket gate meridional profiles were created in ANSYS Bladegen V17.0. Grid models were created in ANSYS Turbogrid V17.0. The geometries of the spiral case and draft tube designs were created in Solidworks 2013. Computational fluid dynamics (CFD) analyzes for turbine components and turbine were performed in steady state with k-ε turbulence model. As a result of the CFD analyses, pressure distributions and flow lines were obtained. The efficiency of the turbine was examined. When the efficiency in design and CFD analysis results were compared, it was seen that there was a difference of %2.

___

  • Ansys Inc. , (2013). CFX Solver Theory Guide. Release; 15: 79-90
  • Bovet T. , (1963). Francis Tipi Bir Reaksiyon Türbininde Çark Kanadının Çizimi, Lozan Üniversitesi
  • ESHA- European Small Hydropower Association, Guide on How to Develop a Small Hydropower Plant, (2004)
  • Ergin A. , (1972) Su Makinaları Ders Notları, İTÜ Makina Fakültesi
  • Haas R. , Hiebert M. , Hoatson E. , (2014). Francis Turbines, Fundamentals and Everything Else You Didn’t Know That You Wanted To Know, Colorado State University, CIVE 401
  • Huang J. , Swiderski J. , Ji J. , Tung T. , Riley M. , (2006). Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study
  • Krivchenko G.I. , (1983). Hydraulic Machines: Turbines and Pumps
  • Laín S. , García M., Quintero B. , Orrego S. , (2010). CFD Numerical simulations of Francis turbines
  • Li J., WU Y., Liu S., Zhu Y, (2010). 3D Unsteady Turbulent Simulation of The Runaway Transient of The Francis Turbine
  • Neopane P.H. , Dahlhaug G.O. , Thapa B. , (2007). Alternative Design of a Francis Turbine for Sand Laden Water
  • Odesola I. F. , Oririabre J. I. , (2013). Development of a 5kW Francis Turbine Runner Using Computation Fluid Dynamics
  • Ruprecht, Heitele, Helmrich, (2014). Numerical Simulation of a Complete Francis Turbine including unsteady rotor/stator interactions
  • Teran L.A. , Larrahondo F.J. , Rodriguez S.A. , (2016). Performance improvement of a 500-kW Francis türbine based on CFD
  • The USGS Water Science School – Hydroelectric power water use https://water.usgs.gov/edu/wuhy.html
  • Wang L. , (2012). The Optimal Design based on CFD Combined with CAD for Turbine Runner