İskilip (Çorum) Civarının Kaya Düşmesi Potansiyelinin Değerlendirilmesi

Kaya düşmesi yaygın olarak gözlenen şev duraysızlığı türlerinden biridir. Yerleşim alanlarının hasar görmesine, ana ulaşım hatlarının kapanmasına, can ve mal kayıplarına neden olan kaya düşmesi olgusundan korunmak için kaynak alanların belirlenmesi ve bu alanlarda düşme potansiyeli olan blokların yörüngelerinin ve menzil mesafelerinin tahmin edilmesi önem taşımaktadır. Bu çalışmada, kaya düşmesi tehdidi altında bulunan Hacıpiri ve Tabakhane Mahallelerinin (İskilip, Çorum) kaya düşme potansiyelinin değerlendirilmesi amaçlanmıştır. Bu amaçla, kaya düşmesi kaynak alanı ve bu alanın jeo-mühendislik özellikleri belirlenmiş olup, kinematik analizler, kaya düşmesi risk sınıflamaları ve iki boyutlu kaya düşmesi analizleri yapılmıştır. Eosen yaşlı konglomera biriminden oluşan kaya düşmesi kaynak alanı için yapılan analizlerde, düşme potansiyeline sahip blokların menzil mesafelerinin 140 m ile 210 m arasında değişim gösterdiği ve bu blokların yerleşim yerlerine kadar ulaşabileceği saptanmıştır. Ayrıca, inceleme alanında meydana gelebilecek kaya düşmelerini engellemek ve/veya hasarları azaltmak için kaya tutma bariyerleri de Rocfall yazılımı kullanılarak modellenmiştir. Uygun özelliklerdeki esnek kaya tutma bariyerleri ile bu blokların yerleşim yerlerine ulaşmasının önlenebileceği analizlerle ortaya konmuştur.

Assessment of Rockfall Potential in The Vicinity of Iskilip (Çorum)

Rockfall is one of the most common types of slope instabilities. It is important to determine the source areas and to estimate the trajectories and run out distances of the blocks that have the potential to fall in order to be protected from the rockfall phenomenon that causes serious damage to the residential areas, the closure of the main transportation lines, and the loss of life and property. In this study, it was aimed to evaluate the rockfall potential of Hacıpiri and Tabakhane (Iskilip, Çorum), which are under the threat of rockfall. For this purpose, rockfall source area and geo-engineering characteristics of this area were determined, kinematic analyzes, rockfall risk classifications and two dimensional rockfall analyzes were performed. According to the analyzes made for the rockfall source area consisting of Eocene aged conglomerate unit, it was determined that the run-out distances of the blocks with fall potential varied between 140 m and 210 m and that these blocks could reach the settlement area. In addition, flexible rockfall barriers are modeled using Rocfall software to prevent possible rockfalls and/or reduce damages that may occur in the study area. The analyzes show that these blocks can be prevented from reaching the settlement area with flexible rockfall barriers with appropriate properties.

___

  • Akın, M., Dinçer İ., Orhan A., Ok A.Ö., Muge A. & Topal T. (2019). Kaya tutma hendek performansının 3-boyutlu kaya düşme analizleriyle değerlendirilmesi: Akköy (Ürgüp) örneği, Jeoloji Mühendisliği Dergisi, 43, 211-232.
  • Aksoy H. & Ercanoglu M. (2006). Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation, Natural Hazards and Earth System Sciences, 6, 941–954.
  • Alejano L.R., Muralha J., Ulusay R., Li C.C., Pérez‑Rey I., Karakul H., Chryssanthakis P. & Aydan Ö. (2018). ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests, Rock Mechanics and Rock Engineering, 51, 3853–3859.
  • Aydan Ö. (1989). The stabilization of rock engineering structures by rockbolts, Doctorate Thesis, 204p, Nagoya University, 1989.
  • Becer M. M., Demir, B. & Şener, A. (2020). İskilip İlçesi Hacıpiri – Tabakhane Mahallesi Jeolojik Etüt Raporu. Çorum İl Afet ve Acil Durum Müdürlüğü, 2020.
  • Binal A. & Ercanoglu M. (2010). Assessment of rockfall potential in the Kula (Manisa, Turkey) geopark region, Environmental Earth Science, 61(7), 1361–1373.
  • Bozzolo D. & Pamini R. (1986). Simulation of rock falls down a valley side, Acta Mechanica, 63, 113–130.
  • Çapar N. (2018). Kaya Düşmesi Analizinde Geri Sıçrama Katsayısının Etkisinin Deneysel ve Analitik Yöntemlerle İncelenmesi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Ana Bilim Dalı Doktora Tezi, Ankara, 186.
  • Crosta G.B. & Agliardi F. (2003). A methodology for physically based rockfall hazard assessment. Natural Hazards and Earth System Sciences, 3, 407–422.
  • Cruden M.D. & Varnes J.D. (1996). Landslide types and processes, Landslides: Investigation and Mitigation, Transport Research Board, Washington DC, 36–75.
  • Dorren L. K. A, Maier B., Putters U. S. & Seijmonsbergen A. C. (2004). Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps.Geomorphology 57:151–167.
  • Dorren L.K.A., Berger F. & Putters U.S. (2006). Real size experiments and 3D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145-153.
  • Ercanoglu M. & Aksoy, H. (2004). Ankara Kalesi ve civarındaki kaya şevleri için potansiyel duraysızlık haritası. Yerbilimleri, 25 (29), 97-114.
  • Gürsoy M., Demircan H., Aydın A., Görmüş M. & Tunoğlu C. (2019). Çankırı-Çorum Havzası Eosen-Oligosen stratigrafisi ve paleocoğrafyası, MTA Doğal Kaynaklar ve Ekonomi Bülteni, 28, 49-53.
  • Guzzetti F., Crosta G., Detti R., & Agliardi F. (2002). STONE: a computer program for the three-dimensional simulation of rockfalls, Computers and Geosciences, 28 (9), 1079-1093.
  • Guzzetti F., Reichenbach P. & Wieczorek G.F. (2003). Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Natural Hazards and Earth System Sciences 3, 491–503.
  • İRAP (2021). T.C. Çorum Valiliği İl Afet ve Acil Durum Müdürlüğü İl Afet Risk Azaltma Planı, 146.
  • Jaboyedoff M. & Labiouse V. (2011). Preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819–828.
  • Kalender A., Sönmez H. (2019). Kargabedir Tepe (Ankara-Eskişehir Karayolu) Bölgesinin Kaya Düşmesi Duyarlılığının İnsansız Hava Aracı (İHA) Görüntüleri Kullanılarak Konik Yayılım Yaklaşımıyla Değerlendirilmesi, Jeoloji Mühendisliği Dergisi, 43, 187-210.
  • Kayabaşı A. (2018). The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey, Arabian Journal of Geoscience, 11, 800.
  • Kobayashi Y., Harp E.L. & Kagawa T. (1990). Simulation of rockfalls triggered by earthquakes, Rock Mechanics and Rock Engineering, 23, 1-20.
  • Matsuoka N. & Sakai H. (1999). Rockfall activity from an alpine cliff during thawing periods, Geomorphology, 28, 309–328.
  • Nasery M.M. & Çelik M. (2020). Kaya Islahı Çalışmalarında Birleşik Çözümlerin İncelenmesi: Trabzon Kaymakli Örneği, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25 (1).
  • Pfeiffer, T.J. & Bowen T.D. (1989). Computer simulation of rockfalls. Bulletin of the International Association of Engineering Geology, 1, pp 135-146.
  • Polat, A. (2020). Cbs Tabanli 3b Kaya Düşmesi Analizi Ve Veri Hazirlama Süreçleri: Kavak Köyü(Sivas-Türkiye) Örneği, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25 (3).
  • Polat, S. & Güney, Y. (2013). Bağbaşı Köyü’nde (Uşak) Kaya Düşmesi. Uşak Üniversitesi Sosyal Bilimler Dergisi, 6 (1), s 198-224.
  • Ritchie A.M. (1963). Evaluation of Rockfall and its Control. Stability of Rock Slope Vol 17, Highway Research Board, National Academy of Sciences-National Research Council., Washington, DC, pp 13–28.
  • Rocscience (2022a) https://www.rocscience.com/software/dips, Dips v7.016, 2022.
  • Rocscience (2022b) Rocfall 2D software, Rocscience Inc.,Toronto, Canada, 2022.
  • San N.E., Topal T. & Akin, M.K. (2020). Rockfall Hazard Assessment Around Ankara Citadel (Turkey) Using Rockfall Analyses and Hazard Rating System, Geotechnical and Geological Engineering, 38, 3831–3851, 2020.
  • Saroglou H., Marinos V., Marinos P. & Tsiambaos G. (2012). Rockfall hazard and risk assessment: an example from a high promontory at the historical site of Monemvasia, Greece. Natural Hazards Earth System Sciences, 12, 1823-1836, 2012.
  • Sevin M. & Uğuz M.F. (2011). 1:100.000 Ölçekli Türkiye Jeoloji Haritaları Çankırı G32 paftası. MTA Yayınları No: 148, 2011.
  • Sönmez H. & Ulusay R. (2002). A discussion of the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Yerbilimleri, 26, 77-90, 2002.
  • Sönmez H. & Ulusay R. (1999) Modifications to the geological strength indeks (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Science, 36 (6), 743-760.
  • Stevens, W. D. (1998). Rocfall: A tool for probablistic analysis, design of remedial measures and prediction of rockfalls, Master’s thesis, University of Toronto, http://www.rocscience.com/library/pdf/rf 3.pdf, 1998.
  • Stimpson B. (1981). A suggested technique for determining the basic friction angle of rock surfaces using core. International Journal of Rock Mechanics and Mining Science Geomechanics Abstracts, 18, 63–65, 1981.
  • Taga H. & Zorlu K. (2017). Assessment of Rockfall Hazard on Steep Slopes: Ermenek (Karaman, Turkey), Yerbilimleri, 38 (2), 161-178.
  • Tokashiki N. & Aydan Ö. (2010). The stability assessment of overhanging Ryukyu limestone cliffs with an emphasis on the evaluation of tensile strength of Rock Mass. Journal of Geotechnical Engineering, JSCE, 66(2), 397-406.
  • Topal, T., Akin, M. K. & Akin, M. (2012). Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Natural Hazards, 62, pp 255–274, DOI:10.1007/s11069-011-9995-1
  • Tunar Özcan N., Aydan Ö., Murayama Y., Horiuchi K. & Ulusay R. (2021). A Study on Model Experiments and Numerical Simulations on Rockfalls and Its Utilization to Assess the Rockfall Hazards in Miyagi Island (Japan) and Cappadocia (Turkey). In: Barla M., Di Donna A., Sterpi D. (eds) Challenges and Innovations in Geomechanics. IACMAG 2021. Lecture Notes in Civil Engineering, Springer, 126, 482-490.
  • Tunusluoglu M.C. & Zorlu K. (2009). Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environmental Geology, 56 (5), 963–972.
  • Ulusay R., Gokceoglu C., Topal T., Sonmez H., Tuncay E., Erguler Z. A. & Kasmer O. (2006). Assessment of environmentel and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Ürgüp (Cappadocia) Turkey, Environmental Geology, 50, 473–494.
  • Ulusay R. (2010). Uygulamalı Jeoteknik Bilgiler, TMMOB Jeoloji Mühendisleri Odası Yayınları No:38, Ankara, 458, 2010.
  • Varnes, D.J. (1978). Slope Movement Types and Processes. Landslide Special Report, 176, National Academy of Sciences, Washington, DC, pp 11-33.
  • Whalley W.B. (1984). Rockfalls, Wiley, New York, 217–256.
  • Whetherspark (2022). http://weatherspark.com, erişim tarihi, 2022.
  • Wyllie D.C. (2015). Rock fall engineering, CRC Press, New York.
  • Yalçın H., Karslı Ş., Dodurga (Çorum) kömür havzasında karbonat ve smektit minerallerinin kökeni ve diyajenetik evrimi. Türkiye Jeoloji Bülteni, 41, 95-108, 1998.