YENİ BİR YÖNTEMLE FOTOVOLTAİK MODÜLLERİN İÇ VE DIŞ SICAKLIK KATSAYILARININ KARŞILIŞTIRILMASI

Bu çalışmada, fotovoltaik modüllerin iç ve dış ortamda elde edilen sıcaklık katsayılarının karşılaştırılması için yeni bir yöntem ortaya konmuştur. Fotovoltaik modüllerin/örgülerin gerçek performanslarının doğru bir şekilde simüle edilebilmesi için doğru sıcaklık katsayılarının kullanılması oldukça önemlidir. Bu yüzden, gerçek performansın simülasyonunda hangi tip sıcaklık katsayılarının (iç veya dış) daha doğru sonuçlar vereceği belirlenmelidir. Kısa devre akımı, açık devre gerilimi,  maksimum çıkış gücü ve üretilen enerji gerçek performans parametreleri olarak kabul edilmişlerdir. Bu çalışmada ortaya konan yeni yöntem, gerçek performansı iç ve dış ortam sıcaklık katsayıları için simüle etmekte ve hangi tip sıcaklık katsayılarının daha doğru olduğunu belirleyebilmek için dış ortamda ölçülen gerçek performansla karşılaştırmaktadır.  

New Method to Compare Indoor and Outdoor Temperature Coefficients of Photovoltaic Modules

In this study, a new method is presented to compare the indoor and outdoor temperature coefficients of photovoltaic module. Precise input of temperature coefficients introduced in the simulation is very essential to obtain accurate results about the actual performance of photovoltaic module/array. Thus, it is important to specify which type (indoor or outdoor) of the temperature coefficient is more accurate in simulating the actual performance. The short circuit current, the open circuit voltage, the output peak power and produced energy are considered as actual performance indexes. New method proposed in this study, simulates the actual performance for both indoor and outdoor temperature coefficients and compares with actual performance measured at field to decide which type of temperature coefficient is more accurate.  

___

  • Bellia, H., Youcef, R. ve Fatima, M. (2014) A detailed modeling of photovoltaic module using MATLAB, NRIAG Journal of Astronomy and Geophysics, 3, 53–61. doi:10.1016/j.nrjag.2014.04.001
  • Chenni, R., Makhlouf, M., Kerbache, T. ve Bouzid, A. (2007) A detailed modeling method for photovoltaic cells, Energy, 32, 1724–1730. doi:10.1016/j.energy.2006.12.006
  • Ciulla, G., Lo Brano, V., Di Dio, V. ve Cipriani, G. (2014) A comparison of different one-diode models for the representation of I–V characteristic of a PV cell, Renewable and Sustainable Energy Reviews, 32, 684–696. doi:10.1016/j.rser.2014.01.027
  • Cuce, E., Cuce, P.M. ve Bali, T. (2013) An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters, Appied Energy, 111, 374–382. doi:10.1016/j.apenergy.2013.05.025
  • Dubey, R., Batra, P., Chattopadhyay, S., Kottantharayil, A., Arora, B.M., Narasimhan, K.L. ve Vasi, J. (2015) Measurement of Temperature Coefficient of Photovoltaic Modules in Field and comparison with Laboratory Measurements, doi:10.1109/PVSC.2015.7355852
  • Dupré, O., Vaillon, R. ve Green, M.A. (2015a) Physics of the temperature coefficients of solarcells, Solar Energy Materials and Solar Cells, 140, 92–100. doi:10.1016/j.solmat.2015.03.025
  • Dupré, O., Vaillon, R., Green, M.A., Dupr, O., Vaillon, R. ve Green, M.A. (2015b) Experimental assessment of temperature coefficient theories for silicon solar cells, IEEE Journal of Photovoltaics, 1–5. doi:10.1109/JPHOTOV.2015.2489864
  • Eke, R. ve Senturk, A. (2012) Performance comparison of a double-axis sun tracking versus fixed PV system, Solar Energy, 86, 2665–2672. doi:10.1016/j.solener.2012.06.006
  • Emery, K., Burdick, J., Caiyem, Y., Dunlavy, D., Field, H., Kroposki, B., Moriarty, T., Ottoson, L., Rummel, S., Strand, T. ve Wanlass, M.W. (1996) Temperature dependence of photovoltaic cells, modules and systems, Twenty Fifth IEEE Photovoltaic Specialist Conference, doi:10.1109/PVSC.1996.564365
  • Fanney, A.H., Davis, M.W., Dougherty, B.P., King, D.L., Boyson, W.E. ve Kratochvil, J. A. (2006) Comparison of Photovoltaic Module Performance Measurements, Journal of Solar Energy Engineering, 128, 152. doi:10.1115/1.2192559
  • Granata, J.E., Boyson, W.E., Kratochvil, J.A., Li, B., Abbaraju, V., Tamizhmani, G. ve Pratt, L. (2011) Successful Transfer Of Sandia National Laboratories Outdoor Test Technology To Tüv Rheinland Photovoltiıc Testing Laboratory, Photovoltaic Specialists Conference (PVSC) 37th IEEE, 003132–003137
  • Huld, T. ve Gracia Amillo, A.M. (2015) Estimating PV module performance over large geographical regions: The role of irradiance, air temperature, wind speed and solar spectrum, Energies, 8, 5159–5181. doi:10.3390/en8065159
  • Humada, A.M., Hojabri, M., Mekhilef, S. ve Hamada, H.M. (2016) Solar cell parameters extraction based on single and double-diode models: A review, Renewable and Sustainable Energy Reviews, 56, 494–509. doi:10.1016/j.rser.2015.11.051
  • Hussein, H.M.S., Ahmad, G.E. ve El-Ghetany, H.H., (2004) Performance evaluation of photovoltaic modules at different tilt angles and orientations, Energy Conversion and Management, 45, 2441–2452. doi:10.1016/j.enconman.2003.11.013
  • Ismail, M.S., Moghavvemi, M. ve Mahlia, T.M.I. (2013) Characterization of PV panel and global optimization of its model parameters using genetic algorithm, Energy Conversion and Management, 73, 10–25. doi:10.1016/j.enconman.2013.03.033
  • Jack, V., Salam, Z. ve Ishaque, K. (2015) Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review, Applied Energy, 154, 500–519. doi:10.1016/j.apenergy.2015.05.035
  • Jiang, J.-A., Wang, J.-C., Kuo, K.-C., Su, Y.-L., Shieh, J.-C. ve Chou, J.J. (2012) Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions, Energy, 44, 292–301. doi:10.1016/j.energy.2012.06.029
  • Makrides, G., Zinsser, B., Georghiou, G.E., Schubert, M. ve Werner, J.H. (2009) Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany, Solar Energy Materials and Solar Cells, 93, 1095–1099. doi:10.1016/j.solmat.2008.12.024
  • Mihaylov, B., Betts, T.R., Pozza, A., Mullejans, H. ve Gottschalg, R. (2016) Uncertainty Estimation of Temperature Coefficient Measurements of PV Modules, IEEE Journal of Photovoltaics, 6, 1–10. doi:10.1109/JPHOTOV.2016.2598259
  • Nassar-eddine, I., Obbadi, A., Errami, Y., El Fajri, A. ve Agunaou, M. (2016) Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study. Energy Conversion and Management, 119, 37–48. doi:10.1016/j.enconman.2016.04.030
  • Osterwald, C.R. (1986) Translation of device performance measurements to reference conditions, Solar Energy Materials and Solar Cells, 18, 269–279. doi:10.1016/0379-6787(86)90126-2
  • Osterwald, C.R., Glatfelter, T. ve Burdick, J. (1987) Comparison of the Temperature Coefficients of the Basic I-V parameters for Various Types of Solar Cell Devices, Energy Conversion, 188–193.
  • Paulescu, M., Badescu, V. ve Dughir, C. (2014) New procedure and field-tests to assess photovoltaic module performance, Energy, 70, 49–57. doi:10.1016/j.energy.2014.03.085
  • Perraki, V. (2013) Temperature Dependence on the Photovoltaic Properties of Selected Thin-Film Modules, International Journal of Renewable and Sustainable Energy, 2, 140. doi:10.11648/j.ijrse.20130204.12
  • Perraki, V. ve Kounavis, P. (2016) Effect of temperature and radiation on the parameters of photovoltaic modules, Journal of Renewable and Sustainable Energy, 8, 13102. doi:10.1063/1.4939561
  • Rodrigues, S., Torabikalaki, R., Faria, F., Cafôfo, N., Chen, X., Ivaki, A.R., Mata-Lima, H. ve Morgado-Dias, F. (2016) Economic feasibility analysis of small scale PV systems in different countries, Solar Energy, 131, 81–95. doi:10.1016/j.solener.2016.02.019
  • Rus-Casas, C., Aguilar, J.D., Rodrigo, P., Almonacid, F. ve Pérez-Higueras, P.J. (2014) Classification of methods for annual energy harvesting calculations of photovoltaic generators, Energy Conversion and Management, 78, 527–536. doi:10.1016/j.enconman.2013.11.006
  • Singh, P. ve Ravindra, N.M. (2012) Temperature dependence of solar cell performance-an analysis, Solar Energy Materials and Solar Cells, 101, 36–45. doi:10.1016/j.solmat.2012.02.019
  • Skoplaki, E. ve Palyvos, J.A. (2009) On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 83, 614–624. doi:10.1016/j.solener.2008.10.008
  • Şentürk, A. ve Eke, R. (2015) Predicting the energy yield of a photovoltaic system from an individual photovoltaic module, Physica Status Solidi C, 3, 1280–1282. doi:10.1002/pssc.201510087
  • Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E. ve Jenkins, P. (2012) A cell-to-module-to-array detailed model for photovoltaic panels, Solar Energy, 86, 2695–2706. doi:10.1016/j.solener.2012.06.004
  • Tossa, A.K., Soro, Y.M., Azoumah, Y. ve Yamegueu, D. (2014) A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions, Solar Energy, 110, 543–560. doi:10.1016/j.solener.2014.09.043
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ