LORENTZ KUVVETİ TABANLI, TINLAYAN ve TİTREŞİM GENLİĞİ ÖLÇÜMÜ İLE ÇALIŞAN BİR MEMS MANYETOMETRE

Bu çalışmada titreşim genliği ölçümü ile çalışan Lorentz kuvveti tabanlı ve algılayıcısı tınlaşan MEMS yük hücresi olan bir manyetometre sunulmaktadır. Manyetometre, tarak elektrotlara sahip Çift Bağlı Diyapazon (ÇBD) bir tınlatıcı ile, uçlarından ve ortalarından birbirlerine bağlanmış kirişlerden oluşan bir ızgara yapısından oluşmaktadır. Izgara yapısı, üzerinden geçen akımla Lorentz kuvvetini oluştururken, elektriksel direncin ve yapının sıcaklığının yükselmesini engellemektedir. Maksimum hassasiyet için yapının genlik frekans tepkisinin eğiminin en büyük olduğu tahrik frekansı seçilmiştir. Manyetometre standart SOI (Yalıtkan-Üzeri-Silisyum) mikro-işleme teknikleri kullanılarak 35µm yapısal kalınlıkla üretilmiştir. Yapılan frekans tepkisi testinde ÇBD yapısının tınlaşım frekansının 63812,1 Hz ve 0,2 mTorr'daki kalite faktörünün de 5950 olduğu belirlenmiştir. Testler yapıya dik olarak oluşturulan 30mT manyetik alan altında, 100mA ızgara akımı ve 70mV tahrik genliği ile yapılmıştır. Manyetometrenin orantı katsayısı 113.7 mV/T ve duyarlılığı  965 µT/Hz½ olarak ölçülmüştür.

A Resonant MEMS Lorentz Force Based Magnetometer with Amplitude Detection

This study presents a Lorentz force magnetometer based on vibration amplitude detection with a resonant MEMS load cell structure as a sensor. Magnetometer is composed of a DETF (Double-Ended Tuning Fork) resonator with comb type electrode and a grill structure formed by beams connected from their centers end ends. The grill structure reduces electrical resistance and prevents overheating while generating the Lorentz force. For maximum sensitivity, the maxima of the slope of the magnitude response is chosen for excitation frequency. The proposed sensor is fabricated using a standard SOI micromachining processes with a device layer thickness of 35 μm. The resonance frequency of the DETF is measured to be 63812,1 Hz, Q-factor of 5950 at around 0.2 mTorr ambient pressure. Tests are done for 30 mT magnetic field normal to the resonator plane, with the grill current of 100 mA and excitation amplitude of 70mV. The scale factor of the magnetometer is measured to be 113.7 mV/T with a resolution of  965 µT/Hz½.

___

  • 1. Azgin, K. ve Valdevit, L. (2013) The effects of tine coupling and geometrical imperfections on the response of DETF resonators, Journal of Micromechanics and Microengineering, 23, 125011-(1-12). DOI:10.1088/0960-1317/23/12/125011
  • 2. Bahreyni, B. ve Shafai, C. (2005) A micromachined magnetometer with frequency modulation at the output, IEEE Sensors 2005, Irvine, 580-583. DOI: 10.1109/ICSENS.2005.1597765
  • 3. Blom, F. R., Bouwstra, S., Fluitman, J. H. J. ve Elwenspoek, M. (1989) Resonating silicon beam force sensor, Sensors and Actuators, 17, 513-519. DOI:10.1016/0250-6874(89)80039-3
  • 4. Brugger, S. ve Paul, O. (2008) Resonant magnetic microsensor with microT resolution, IEEE 21st International Conference on MEMS, Tucson, 944-947. DOI:10.1109/MEMSYS.2008.4443813
  • 5. Chang, S. C., Putty, M. W., Hicks, D. B., Li, C. H. ve Howe, R. T. (1990) Resonant-bridge two-axis microaccelerometer, Sensors and Actuators A: Physical, 21, 342-345. DOI:10.1016/0924-4247(90)85068-F
  • 6. Cheshmehdoost, A., Jones, B. E. ve O'Connor, B. (1991) Characteristics of a force transducer incorporating a mechanical DETF resonator, Sensors and Actuators A: Physical, 26, 307-312. DOI:10.1016/0924-4247(91)87009-R
  • 7. DiLella, D., Whitman, L. J., Colton, R. J., Kenny, T. W., Kaiser, W. J., Vote, E. C., Podosek, J. A. ve Miller, L. M. (2000) A micromachined magnetic-field sensor based on an electron tunneling displacement transducer, Sensors and Actuators A: Physical, 86, 8-20. DOI:10.1016/S0924-4247(00)00303-4
  • 8. Emmerich, H. ve Schofthaler, M. (2000) Magnetic field measurements with a novel surface micromachined magnetic-field sensor, Electron Devices, IEEE Transactions on, 47, 972-977. DOI:10.1109/16.841228
  • 9. Erdem, U. (1982) Force and weight measurement, Journal of Physics E: Scientific Instruments, 15, 857-872.
  • 10. Ettelt, D., Rey, P., Jourdan, G., Walther, A., Robert, P. and Delamare, J. (2013) 3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs), Microelectromechanical Systems, Journal of, 23(2), 324-333. DOI:10.1109/JMEMS.2013.2273362
  • 11. Eyre, B., Pister, K. S. J., ve Kaiser, W. (1998) Resonant mechanical magnetic sensor in standard CMOS, Electron Device Letters, IEEE, 19, 496-498. DOI:10.1109/55.735758
  • 12. Herrera-May, A. L., Garcia-Ramirez, P. J., Aguilera-Cortes, L. A., Figueras, E., Martinez-Castillo, J., Manjarrez, E., Sauceda, A., Garcia-Gonzalez, L. ve Juarez-Aguirre, R. (2010) Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution, Sensors and Actuators A: Physical, 165, 399-409. DOI:10.1016/j.sna.2010.07.005
  • 13. Howe, R. T., Boser, B. E. ve Pisano, A. P. (1996) Polysilicon integrated microsystems: technologies and applications, Sensors and Actuators A: Physical, 56, 167-177. DOI:10.1016/0924-4247(96)01291-5
  • 14. Jha, C. M., Salvia, J., Chandorkar, S. A., Melamud, R., Kuhl, E. ve Kenny, T. W. (2008) Acceleration insensitive encapsulated silicon microresonator, Applied Physics Letters, 93, 234103-(1-3). DOI:10.1063/1.3036536
  • 15. Kadar, Z., Bossche, A., Sarro, P. M. ve Mollinger, J. R. (1998) Magnetic-field measurements using an integrated resonant magnetic-field sensor, Sensors and Actuators A: Physical, 70, 225-232. DOI:10.1016/S0924-4247(98)00143-5
  • 16. Keplinger, F., Kvasnica, S., Jachimowicz, A., Kohl, F., Steurer, J. ve Hauser, H. (2004) Lorentz force based magnetic field sensor with optical readout, Sensors and Actuators A: Physical, 110, 112-118. DOI:10.1016/j.sna.2003.10.025
  • 17. Kyynarainen, J., Saarilahti, J., Kattelus, H., Karkkainen, A., Meinander, T., Oja, A., Pekko, P., Seppa, H., Suhonen, M., Kuisma, H., Ruotsalainen, S. ve Tilli, M. (2008) A 3D micromechanical compass, Sensors and Actuators A: Physical, 142, 561-568. DOI:10.1016/j.sna.2007.08.025
  • 18. Lee, J. E. Y., Bahreyni, B. ve Seshia, A. A. (2008) An axial strain modulated double-ended tuning fork electrometer, Sensors and Actuators A: Physical, 148, 395-400. DOI:10.1016/j.sna.2008.09.010
  • 19. Mo, L., Rouf, V. T., Jaramillo, G. ve Horsley, D. A. (2013) MEMS Lorentz force magnetic sensor based on a balanced torsional resonator, Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 66-69. DOI:10.1109/Transducers.2013.6626702
  • 20. Myers, D. R., Cheng, K. B., Jamshidi, B., Azevedo, R. G., Senesky, D. G., Chen, L., Mehregany, M., Wijesundara, M. B. J. ve Pisano, A. P. (2009) Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments, Journal of Micro/Nanolithography, MEMS and MOEMS, 8, 021116-(1-7). DOI:10.1117/1.3143192
  • 21. Niarchos, D. (2003) Magnetic MEMS: key issues and some applications, Sensors and Actuators A: Physical, 109, 166-173. DOI:10.1016/S0924-4247(03)00179-1
  • 22. Pala, S., Çiçek, M. ve Azgın, K (2016) A Lorentz force MEMS magnetometer, 2016 IEEE Sensors Conference, Orlando, 1-3. DOI: 10.1109/ICSENS.2016.7808507
  • 23. Paros, J. M. (1973) Precision Digital Pressure Transducer, ISA Transactions, 12, 173-179.
  • 24. Rodriguez, B. J., Callahan, C., Kalinin S. V. and Proksch, R (2007) Dual-frequency resonance-tracking atomic force microscopy, Nanotechnology, 18, 475504-(1-6). DOI:10.1088/0957-4484/18/47/475504
  • 25. Roessig, T. A., Howe, R. T., Pisano, A. P. ve Smith, J. H. (1997) Surface-micromachined resonant accelerometer, International Conference on Solid State Sensors and Actuators, TRANSDUCERS '97, Chicago, 859-862. DOI:10.1109/SENSOR.1997.635237
  • 26. Seshia, A. A., Howe, R. T. ve Montague, S. (2002) An integrated microelectromechanical resonant output gyroscope, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, 722-726. DOI: 10.1109/MEMSYS.2002.984372
  • 27. Tang, W. C., Nguyen T.-C. H. ve Howe, R. T. (1989) Laterally Driven Polysilicon Resonant Microstructures, Sensors and Actuators, 20, 25-32. DOI:10.1109/MEMSYS.1989.77961
  • 28. Tilmans, H. A. C., Elwenspoek, M. ve Fluitman, J. H. J. (1992) Micro resonant force gauges, Sensors and Actuators A: Physical, 30, 35-53. DOI:10.1016/0924-4247(92)80194-8
  • 29. Torrents, A., Azgin, K., Godfrey, S. W., Topalli, E. S., Akin, T. ve Valdevit, L. (2010) MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design, Journal of Micromechanics and Microengineering, 20, 125004-(1-17). DOI:10.1088/0960-1317/20/12/125004
  • 30. Ueda, T., Kohsaka, F. ve Ogita, E. (1985) Precision force transducers using mechanical resonators, Measurement, 3, 89-94. DOI:10.1016/0263-2241(85)90010-7
  • 31. Van Mullem, C. J., Tilmans, H. A. C., Mouthaan, A. J. ve Fluitman, J. H. J. (1992) Electrical cross-talk in two-port resonators - the resonant silicon beam force sensor, Sensors and Actuators A: Physical, 31, 168-173. DOI:10.1016/0924-4247(92)80099-O
  • 32. Wickenden, D. K., Champion, J. L., Osiander, R., Givens, R. B., Lamb, J. L., Miragliotta, J. A., Oursler, D. A. ve Kistenmacher, T. J. (2003) Micromachined polysilicon resonating xylophone bar magnetometer, Acta Astronautica, 52, 421-425. DOI:10.1016/S0094-5765(02)00183-2
  • 33. Wojciechowski, K. E., Boser, B. E. ve Pisano, A. P. (2004) A MEMS resonant strain sensor operated in air, 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, 841-845. DOI: 10.1109/MEMS.2004.1290718
  • 34. Yang, H. H., Myung N. V., Yee, J., Park, D. Y., Yoo, B. Y., Schwartz, M., Nobe, K., ve Judy, J. W. (2002) Ferromagnetic micromechanical magnetometer, Sensors and Actuators A: Physical, 97 ve 98, 88-97. DOI:10.1016/S0924-4247(01)00809-3
  • 35. Yee, J. K., Yang, H. H. ve Judy, J. W. (2002) Dynamic response and shock resistance of ferromagnetic micromechanical magnetometers, The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, Las Vegas, 308-311. DOI: 10.1109/MEMSYS.2002.984264
  • 36. Zulliger, H. R. (1983) Precise measurement of small forces, Sensors and Actuators, 4, 483-495. DOI:10.1016/0250-6874(83)85061-6
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

YAPAY ZEKÂ MODELLERİ İLE BETONARME YAPILARA AİT ENERJİ PERFORMANS SINIFLARININ TAHMİNİ

Melda YÜCEL, ERSİN NAMLI

ATIKSU ARITMA TESİSLERİ İÇİN İKLİM DEĞİŞİKLİĞİNE VE SERA ETKİSİNE GENEL BİR BAKIŞ

PELİN YAPICIOĞLU, ÖZLEM DEMİR

REAL TIME TRAJECTORY TRACKING OF MOVING OBJECTS USING ADAPTIVE FUZZY TIME SERIES AND EXPONENTIAL SMOOTHING FORECASTING TECHNIQUES

MUSTAFA YAĞIMLI

SAC METAL ŞEKİLLENDİRME KALIPLARINDA KULLANILAN BİZMUT-KALAY DÖKÜM ALAŞIMLARININ MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

İsmail DURGUN, KURTULUŞ YİĞİT, HAKAN AYDIN, ALİ BAYRAM

EL BASKISI İŞLETMELERİNDEN KAYNAKLANAN TEKSTİL ATIKSULARININ UV/H2O2 PROSESİYLE ARITILABİLİRLİĞİNİN YAPAY SİNİR AĞLARI İLE ARAŞTIRILMASI

MELİKE YALILI KILIÇ, TANER YONAR

MİKROMEKANİK OLARAK TASARLANMIŞ ÇİMENTO ESASLI KOMPOZİTİN (ECC) KENDİLİĞİNDEN İYİLEŞMESİ

CEREN KINA, KAZIM TÜRK

AA6082-T6 ve AA1035-H14 ALÜMİNYUM ALAŞIMLARINDA HADDELEME YÖNÜNÜN ve ÇEKME DEFORMASYON HIZININ ÇEKME ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ

HAKAN AYDIN, OĞUZ TUNÇEL, KURTULUŞ YİĞİT, Furkan BALAMUR, Oktay ÇAVUŞOĞLU, Oğuzalp DÜZGÜN

İÇ VE DIŞ ORTAM HAVA ÖRNEKLERİNDE POLİAROMATİK HİDROKARBONLARIN (PAH’ların) İNCELENMESİ: BURSA ÖRNEĞİ

FATMA ESEN, Gizem KAYIKÇI

SANDVİÇ KOMPOZİTLERİN DELİNMESİNDE DELAMİNASYON FAKTÖRÜNÜN İNCELENMESİ

ABDİL KUŞ, ERGÜN EKİCİ

ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

Erdal YILDIRIM, Zeynel Abidin FIRATOĞLU, Bülent YEŞİLATA