EXPERIMENTAL AND THEORETICAL ANALYSIS OF HEADLIGHT SURFACE TEMPERATURE IN AN INFRARED HEATED STRESS RELIEVING OVEN

Bu çalışmada, infrared (IR) lambalar ile çalışan bir gerilim giderme fırını deneysel ve teorik olarak incelenmiştir. Deneysel çalışmada, farklı konveyör hızları ve ısıtıcı mesafeleri için far yüzeyindeki sıcaklıklar ölçülmüştür. Teorik çalışmada ise ısı transfer ifadeleri kullanılarak bir far yüzeyindeki sıcaklıkların tahmini için bir model oluşturulmuştur. Matematik modelden elde edilen sonuçlar deneysel veriler birbirine benzerlik göstermiş ve deneysel veriler ile karşılaştırıldığında ortalama % 6.5' lik bir fark bulunmaktadır. Matematik modelin farklı çalışma şartlarında far yüzeyinin sıcaklığını tahmin etmede kullanılabileceği gösterilmiştir.

In this study, the IR heated stress relieve oven, was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven, at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with 6.5% average error. It is shown that mathematical model can be used to estimate the surface temperatures in case of different conditions were run in oven.

___

  • Ansys Fluent, (2012) User's Guide, Ansys Inc.
  • ASHRAE. (2000) Fundamentals Handbook, American Society of Heating, Refrigerating and Air Conditioning Engineers, New York.
  • Aydogdu, A., Sumnu, G., Sahin, S. (2015) Effects of microwave-infrared combination drying on quality of eggplants, Food Bioprocess Technology, 8(3), 1198 - 1210.doi:10.1007/s11947-015-1484-1
  • Bordival, M., Schmidt, F. M., Le Maoult, Y., Velay, V. (2009) Optimization of preform temperature distribution for the stretch-blow molding of pet bottles: infrared heating and blowing modeling, Polymer Engineering and Science, 49(4), 783 - 793. doi: 10.1002/pen.21296
  • Cenkowski, S., Hong, J. T., Scanlon, M. G., Arntfield, S. D. (2004) Mathematical modeling of heat and mass transfer during continuous infrared micronization, Drying Technology, 22(10), 2255-2272. doi:10.1081/DRT-200039989
  • Chang, P.C., Hwang, S. J. (2006) Simulation of infrared rapid surface heating for injection molding, International Journal of Heat and Mass Transfer, 49(21-22), 3846-3854. doi:10.1016/j.ijheatmasstransfer.2006.04.014
  • Cosson, B., Schmidt, F., Le Maoult, Y. L., Bordival, M. (2011) Infrared heating stage simulation of semi-transparent media (pet) using ray tracing method, International Journal of Material Forming, 4(1), 1 - 10. doi:10.1007/s12289-010-0985-8
  • Çengel, Y.A. (2003) Heat Transfer, McGraw-Hill, New York.
  • Dhall, A., Datta, A. K., Torrance, K. E., Almedia, M. F. (2009) Radiative heat exchange modeling inside an oven, AIChE Journal, 55(9), 2448 - 2460. doi:10.1002/aic.11903
  • Hasatani, M., Arai, N., Itaya Y., Onoda N. (1983) Drying of optically semitransparent materials by combined radiative-convective heating, Drying Technology, 1(2), 193-214. doi:10.1080/07373938308916778
  • Hasatani, M.; Itaya, Y.; Miura, K. (1988) Hybrid drying of granular materials by combined radiative 10.1080/07373938808916360 heating, Drying Technology, 6(1), 43-68. doi:
  • Lee, E. H., Yang, D. Y., Yang, W. H. (2014) Numerical modeling and experimental validation of focused surface heating using near-infrared rays with an elliptical reflector. International doi:10.1016/j.ijheatmasstransfer.2014.06.073 of Heat and Mass Transfer, 78, 240 - 250.
  • Monteix, S., Schmidt, F., Moult, Y. L., Yedder, R. B., Diraddo, R. W., Laroche, D. (2011) Experimental study and numerical simulation of preform or sheet exposed to infrared radiative heating, Journal of Materials Processing Technology, 119, 90-97. doi:10.1016/S0924-0136(01)00882-2
  • Mujumdar, A. S. (2015) Handbook of industrial drying, CRC Pres, New York.
  • Pettersson, M., Strenström, S. (2000) Modelling of an electric IR heater at transient and steady state conditions Part 1: model and validation, International Journal of Heat and Mass Transfer, 43(7), 1209-1222. doi:10.1016/S0017-9310(99)00201-X
  • Sandu, C. (1986) Infrared radiative drying in food engineering: a process analysis, Biotechnology Progress, 2(3), 109-119. doi:10.1002/btpr.5420020305
  • Sevilgen, G., Kılıç, M. (2011) Numerical Comparison of the Heat Transfer Characteristics in an Automobile Cabin During Heating Period by Using Different Radiation Models, Uludağ University Journal of The Faculty of Engineering, 16(1), 143-159.
  • Schmidt, F.M., Maoult, Y. L., Monteix, S. (2003) Modelling of infrared heating of thermoplastic sheet used in thermoforming process, Journal of Materials Processing Technology, 143-144, 225-231. doi:10.1016/S0924-0136(03)00291-7
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ