ARAÇLARDA KABİN İÇİ SESLERİ ETKİLEYEN PARAMETRELERİN TESTLERLE İNCELENMESİ

Gelişen otomotiv sektöründe daha rekabetçi olabilmek için sürüş konforu iyileştirilmiş araçlar üretilmektedir. Sürüş konforunu etkileyen parametrelerden biri aracın kabin içi akustik performansıdır. Kabin bölgesine etki eden en belirgin sesler; yol, rüzgar, tekerlek, trim ve motor sesleridir. Bu çalışmada, araç gövdesinde oluşan titreşim yığılmaları tespit edilmiş ve buna göre araç gövdesi izolasyonla iyileştirilerek kabin içi ses değerlendirmesi yapılmış ve izolasyon iyileştirmeleri ile akustik performansın iyileştirildiği tespit edilmiştir. Sonrasında motor türlerinin, aynı tür motor için farklı gövde tiplerinin, tekerlek jant etkilerinin ve motor takozlarının kabin içi ses düzeyine etkisi incelenmiştir. Akustik performansın incelenmesinde ses seviyesinden ziyade duyum indisi kavramının belirleyici olduğu tespit edilmiştir. Araç gövdesindeki izolasyon ve motor takozlarının etkisi jüri testleri ile de değerlendirilmiştir.

Investigation of Parameters that Affect Interior Sounds in Vehicles with Tests

Vehicles with improved driving comfort are produced in order to be more competitive in the developing automotive sector. One of the parameters that affect driving comfort is the acoustic performance of the vehicle in the cabin. The most explicit sounds that affect the cabin area are road, wind, wheel, trim, and engine sounds. In this study, vibration accumulation on the body of the vehicle has been determined. Accordingly, the vehicle body has been improved with isolation, and sound assessment has been done inside the cabin. It has been determined that the acoustic performance is improved with the isolation improvements in the vehicle. Afterward, the effect of engine types, different body types for the same kind of engine, wheel rim effects, and engine mounts on the interior sound level is examined. In the examination of acoustic performance, it is determined that the articulation index is determinant rather than the sound level. The isolation effect on the vehicle body and the impact of the engine mounts are evaluated by the jury tests. 

___

  • 1. Heißing, B., Aksoy, M. (2011) Chassis Handbook Fundamentals, driving dynamics, components, mechatronics, perspectives, Vieweg+Teubner, Berlin, Germany.
  • 2. Accardo, G., Peeters, B., Bianciardi, F., Janssens, K., El-Kafafy, M., Brandolisio, D. and Martarelli, M. (2015) Experimental acoustic modal analysis of an automotive cabin, Sound and Vibration, 8, 33-58. doi: 10.1007/978-3-319-15236-3_4
  • 3. Batmaz, İ. ve Aydın, İ. (2012) Taşıtlarda kullanılan yalıtım malzemelerinin ses yutma katsayılarının belirlenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27 (4), 687-693.
  • 4. Cerrato G. (2009) Automotive sound quality – powertrain, road and wind noise, Sound and Vibration, 43(4), 16-24.
  • 5. Eisele G., Wolff K., Alt, N. and Hüser, M. (2005) Application of vehicle interior noise simulation (VINS) for NVH analysis of a passenger car, SAE 2005 Noise and Vibration Conference and Exhibition, 16 May, 2005, Michigan, United States. doi: 10.4271/2005-01-2514
  • 6. Everest F. A. (2001) The Master handbook of acoustic, The Mcgraw –Hill Companies Inc., New York.
  • 7. French, N.R. and Steinberg, J.C. (1946) Factors governing the intelligibility of speech sounds, The Journal of the Acoustical Society of America, 19, 90-119. doi: 10.1121/1.1916407
  • 8. Genuit, K. (2004) The sound quality of vehicle interior noise : a challange fort he NVH engineers, International Journal of Vehicle Noise and Vibration, 1, 158-168. doi: 10.1504/IJVNV.2004.004079
  • 9. Genuit, K. (2009) Vehicle interior noise – combination of sound, vibration and interactivity, Sound and Vibraition, 43(12), 8-13.
  • 10. Jain, S.K., Joshi, M.P., Shravage, P.G., Yadav, P.S. and Karanth, N.V. (2013) Evaluation of acoustic performance of automotive seats by experimental and simulation techniques, Symposium on International Automotive Technology, 9-12 January, 2013, Maharashtra, India, 1-7. doi:10.4271/2013-26-0105
  • 11. Jennings, P.A., Dunne, G., Williams, R. and Giudice, S. (2010) Tools and techniques for understanding the fundamentals of automotive sound quality, Institution of Mechanical Engineers. Proceedings. Part D: Journal of Automobile Engineering, 224, 1263-1278. doi: 10.1243/09544070JAUTO1407
  • 12. Ju, J., Wang, Y.S., Xing, Y.F., Shen, G.Q. and Guo, H. (2013) Sound quality evaluation of vehicle interior noise based on psychoacoustical indices, IEEE Transactions on Industrial Electronics, 64 (12), 9442-9450.
  • 13. Sadananda, N. (2016) Experimental study of low-mid frequency interior noise of an SUV, MSc Thesis, Department of Applied Mechanics Division of Vehicle Engineering Autonomous Systems, Chamlers University of Technology, Gothenburg, Sweden.
  • 14. Sherbecoei, R.L. and Studebaker, G.A. (1990) Regression equations for the transfer functions of ANSI S3.5-1969, The Journal of the Acoustical Society of America, 88 (5), 2482-2483. doi: 10.1121/1.400090
  • 15. Swart, D.J. and Bekker, A. (2014) The subjective evaluation of interior noise produced by electric vehicles, 9 th South African Conference on Computational and Applied Mechanics, 14-16 January, 2014, Somerset West, South Africa.
  • 16. Yazıcı, M. (2007) İşyerlerinde gürültü, Mühendis ve Makine, 571, 14-16.
  • 17. Arda, Ü. (2019) Araçlarda motor seslerinin kabin içindeki etkilerinin azaltılması , Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • 18. Flor, D., Pena, D., Pena, L., Sousa, V.A. and Martins, A. (2020) Characterization of noise level ınside a vehicle under different conditions, Sensors, 20 (9), 1-19. doi:10.3390/s20092471