A CHARACTERIZATION OF WAVE PACKET FRAMES FOR L2 Rd
In this paper we present necessary and sucient conditions with explicit frame bounds for a nite sum of wave packet frames to be a frame for L2 Rd . Further, we illustrate our results with some examples and applications.
___
- Casazza, P. G., Kutyniok, G., (2012), Finite frames: Theory and Applications, Birkh¨auser.
- Cerone, P., Dragomir, S.S., (2011), Mathematical Inequalities, CRC Press, New York.
- Christensen, O., Linear combinations of frames and frame packets, Z. Anal. Anwend., 20 (4), pp. 815. Christensen, O., (2002), An introduction to frames and Riesz bases, Birkh¨auser, Boston.
- Christensen, O., Rahimi, A., (2008), Frame properties of wave packet systems in L2(R), Adv. Comput. Math., 29, pp. 101–111.
- Cordoba, A., Fefferman, C., (1978), Wave packets and Fourier integral operators, Comm. Partial Differential Equations, 3 (11), pp. 979–1005.
- Czaja, W., Kutyniok, G., Speegle, D., (2006), The Geometry of sets of prameters of wave packets, Appl. Comput. Harmon. Anal., 20, pp. 108–125.
- Heil, C., Walnut, D. (1989), Continuous and discrete wavelet transforms, SIAM Rev., 31 (4), pp. –666.
- Heil, C., (2011), A basis theory primer, Expanded edition. Applied and Numerical Harmonic Analysis.
- Birkh¨auser/Springer, New York. Hern´andez, E., Labate, D., Weiss, G., (2002), A unified characterization of reproducing systems generated by a finite family II, J. Geom. Anal., 12 (4), pp. 615–662.
- Hern´andez, E., Labate, D., Weiss, G., Wilson, E., (2004), Oversampling, quasi-affine frames and wave packets, Appl. Comput. Harmon. Anal., 16, pp. 111–147.
- Kumar, R., Sah, A. K., (2016), Stability of multivariate wave packet frames for L2(Rn), Boll. Unione Mat. Ital., DOI 10.1007/s40574-016-0106-9.
- Kumar, R., Sah, A. K., (2016), Matrix Transform of Irregular Weyl-Heisenberg Wave Packet Frames for L2(R), TWMS J. App. Eng. Math., Accepted.
- Kumar, R., Sah, A. K., (2017), Perturbation of Irregular Weyl-Heisenberg Wave Packet Frames in
- L2(R), Osaka J. Math., Preprint. Labate, D., Weiss, G., Wilson, E., (2004), An approach to the study of wave packet systems, Contemp. Math., 345, pp. 215–235.
- Lacey, M., Thiele, C., (1997), Lpestimates on the bilinear Hilbert transform for 2 < p < ∞, Ann. Math., 146, pp. 69–724.
- Lacey, M., Thiele, C., (1999), On Calder´on’s conjecture, Ann. Math., 149, pp. 475–496.
- Sah, A.K., (2016) Linear combination of wave packet frame for L2(Rd), Wavelets and Linear Algebra, (2), pp. 19–32.
- Sah, A.K., Vashisht, L.K., (2014), Hilbert transform of irregular wave packet system for L2(R)
- Poincare J. Anal. Appl., 1, pp. 9–17. Sah, A.K., Vashisht, L.K., (2015), Irregular Weyl-Heisenberg wave packet frames in L2(R), Bull. Sci. Math. 139, pp. 61–74.
- Ashok Kumar Sah for the photography and short autobiography, see TWMS J. App. Eng. Math. V.7, N.2, 2017.