NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION

In this article, new iterative method NIM is employed to nd the numerical solution of linear and nonlinear time-fractional order Fokker-Planck equation FPE , which is applied in many elds of engineering and applied science. The introduced technique renders an analytical solution in the form of a convergent series with easily computable components without using any restrictive assumptions. Three numerical examples are tested using this method. Plotted graph illustrate the eciency and accuracy of the proposed method.

___

  • He, J. H., (1997), Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul., 2(4), pp. 235-236.
  • He, J. H., (1998), Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Engrg., 167, pp. 69-73.
  • He, J. H., (1999), Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., 34, pp. 699-708.
  • Prakash, A., Kumar. M and Sharma, K. K., (2015), Numerical method for solving fractional coupled Burgers equations, Applied Mathematics and Computation, 260, pp. 314-320.
  • Prakash, A. and Kumar. M., (2016), He’s Variational iteration method for the solution of nonlinear Newell-Whitehead-Segel equation, Journal of Applied Analysis and Computation, 6(3), pp. 738-748.
  • Prakash, A. and Kumar, M., (2016), Numerical solution of two dimensional time fractional-order biological population model, Open Physics, 14, pp. 177186.
  • Prakash, A. and Kumar, M., (2017), Numerical method for solving time fractional multi-dimensional diffusion equations, Int. J. Computing Science and Mathematics, 8(3), pp. 257-267.
  • Aruna. K and Ravi Kanth, A. S. V., (2013), Approximate solutions of nonlinear fractional Schrodinger equation via differential transform method and modified differential transform method, National Academy Science Letters, 36(2), pp. 201-213
  • Prakash, A., (2016), Analytical method for space-fractional telegraph equation by homotopy petur bation transform method, Nonlinear Engineering, 5(2), pp. 123-128.
  • Kumar, S., Kocak, H. and Yildirim, A.,(2012), A fractional model of gas dynamics equations and its analytical approximate solution using Laplace transform, Z. Naturforsch, 67a, pp. 389-396.
  • Kumar. S, Yildirim, A., Khan, Y. and Wei, L., (2012), A fractional model of the diffusion equation and its analytical solution using Laplace transform, Sci. Iran. B, 19 (4), pp. 1117-1123.
  • Kumar, D., Singh, J. and Baleanu, D., (2016), Numerical computation of a fractional model of differential-difference equation, Journal of Computational and Nonlinear Dynamics, 11(6), pp. 0610041-0610044.
  • Kumar, D., Singh, J. and Baleanu, D., (2017), A new analysis for fractional model of regularized long- wave equation arising in ion acoustic plasma waves, Math. Meth. Appl. Sci., DOI: 10.1002/mma.4414.
  • Singh, J., Kumar, D., Swroop, R. and Kumar, S., (2017), An efficient computational approach for time-fractional Rosenau-Hyman equation, Neural Computing and Applications, DOI 10.1007/s00521- 017-2909-8.
  • Srivastava, H. M., Kumar, D. and Singh, J., (2017), An efficient analytical technique for fractional model of vibration equation, Applied Mathematical Modelling, 45, pp. 192-204.
  • Kumar, D., Singh, J. and Baleanu, D., (2017), A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dynamics, 87, pp. 511-517.
  • Daftardar-Gejji, V. and Jafari, H.,(2006), An iterative method for solving nonlinear functional equa- tions, J. Math. Anal. Appl., 316, pp. 753-763.
  • Daftardar-Gejji, V. and Bhalekar, S., (2010), Solving fractional boundary value problems with Dirich- let boundary conditions, Comput. Math. Appl., 59, pp. 1801-1809.
  • Bhalekar, S. and Daftardar-Gejji,V., (2008), New iterative method: application to partial differential equations, Appl. Math. Comput. 203, pp. 778-783.
  • Daftardar-Gejji, V. and Bhalekar, S.,(2008), Solving fractional diffusion-wave equations using the new iterative method, Frac. Calc. Appl. Anal., 11 , pp. 193-202.
  • Bhalekar, S. and Daftardar-Gejji, V., (2012), Numeric-Analytic solutions of dynamical systems using a new iterative method, Journal of Applied Nonlinear Dynamics, 1(2), pp. 141-158.
  • Al-luhaibi, M. S., (2017), An analytical treatment to fractional Fornberg-Whitham equation, Math. Sci., 11(1), pp. 1-6.
  • Bhalekar, S. and Daftardar-Gejji, V., (2010), Solving evolution equations using a new iterative method, Numer. Methods Partial Differential Equations, 26 (4), pp. 906-916.
  • Risken, H., (1988), The FokkerPlanck Equation, Springer, Berlin.
  • Liu, F., Anh, V. and Turner, I., (2004), Numerical solution of the space fractional Fokker-Planck equation, J. Comp. Appl. Math., 166 (1), pp. 209-219.
  • Yan, L., (2013), Numerical solutions of fractional Fokker- Planck equations using iterative Laplace transform method, Abstract and Applied Analysis, Article ID 465160.
  • Yildirim, A., (2010), Analytical approach to Fokker-Planck equation with space-and time-fractional derivatives by homotopy perturbation method, J. King Saud University (Science), 22, pp. 257-264.
  • Liu, F., Anh, V. and Turner, I., (2004), Numerical solution of the space fractional Fokker-Planck equation, Journal of Computational and Applied Mathematics, 166, pp. 209-219.
  • Metzler, R. and Nonnenmacher, T. F., (2002), Space- and time fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chemical Physics, 284(1-2), pp. 67- 90.
  • Metzler, R., Barkai, E. and Klafter, J., (1999), Deriving fractional Fokker-Planck equations from generalised master equation, Europhysics Letter, 46(4), pp. 431-436.
  • El-Wakil, S. A. and Zahran, M. A., (2000), Fractional Fokker-Planck equation, Chaos Solitons and Fractals, 11(5), pp. 791-798.
  • Chechkin, A. V., Klafter, J. and Sokolov, I. M., (2003), Fractional Fokker-Planck equation for ultraslow kinetics, Eurphysics Letters, 63(3), pp. 326-332.
  • Stanislavsky, A. A., (2003), Subordinated Brownian motion and its fractional Fokker-Planck equation, Physica Scripta, 67(4), pp. 265-268.
  • Kim, K. and Kong, Y. S., (2002), Anomalous behaviours in fractional Fokker-Planck equation, Journal of the Korean Physical Society, 40(6), pp. 979-982.
  • Sokolov, I. M., (2001), Thermodynamics and fractional Fokker-Planck equations, Physical Review, Statistical, Nonlinear and Soft Matter Physics, 63(5), pp. 561111-561118.
  • Tarasov, V. E.,(2007), Fokker-Planck equation for fractional systems, International Journal of Modern Physics B, 21(6), pp. 955-967.
  • Liu, F., Anh, V. and Turner, I., (2004), Numerical solution of the space fractional Fokker-Planck equation, Journal of Computational and Applied Mathematics, 166(1), pp. 209-219.
  • Deng, W., (2004), Finite element method for the space and time-fractional Fokker-Planck equation, SIAM Journal on Numerical Analysis, 47(1), pp. 204-226.
  • Odibat, Z. and Momani, S., (2007), Numerical solution of Fokker-Planck equation with space and time-fractional derivatives, Physics Letters A: General, Atomic and Solid State Physics, 369(5-6), pp. 349-358.
  • Kumar, S., (2013), Numerical Computation of Time-Fractional Fokker- Planck equation Arising in Solid State Physics and Circuit theory, Zeitschrift fur Naturforschung, 68a , pp. 1-8.
  • Harrison, G.,(1988), Numerical solution of the Fokker-Planck equation using moving finite elements, Numer. Methods Partial Differential Equations, 4, pp. 219-232.
  • Yao, J. J., Kumar, A. and Kumar, S., (2015), A fractional model to describe the Brownian motion of particles and its analytical solution, Advances in Mechanical Engineering, 7(12), pp. 1-11.
  • Podlubny, I., (1999), Fractional Differential Equations, Academic Press, San Diego.
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204.
  • Liao, S., (2012), Homotopy Analysis Method in Nonlinear Differential Equations, Springer.