Calculation of average skidding distance on sloping terrain with GIS tools

Bölmeden çıkarma çalışmalarında, sürütme işleminin verimliliğini ve sürütme maliyetlerini belirlemek için gerçek sürütme rotasının tahmin edilmesi ve ortalama sürütme mesafesinin hesaplanması gereklidir. Bu çalışmada gerçek ortalama sürütme mesafesinin nasıl hesaplanacağı ve üç boyutlu olarak düzensiz şekillere sahip üretim bloklarında/ünitelerinde hangi operasyon adımlarının takip edileceği tasarlanmıştır. Üretim meşcereleri olan bölmeler, dağlık arazide topoğrafik yapı, akış yönü ve yolun konumuna göre belirlenen transport sınırlarına göre üretim blokları denilen bölmecik poligonlarına ayrılmıştır. En uygun yol parçası ve bu poligonların orta noktaları arasındaki yüzey uzunluğuna bağlı olan ortalama sürütme mesafesinin hesaplanması için seçici bir süreç izlenmiştir. Çalışmada raster ve vektör Coğrafi Bilgi Sistemi (CBS) araçları kullanılmıştır. Diğer yaklaşımların karşılaştırılması ve hesaplama algoritmalarının değerlendirilmesi için çok sayıda sürütme mesafesi belirleme stratejisi geliştirilmiş ve aynı test alanında uygulanmıştır. Çalışmada konumsal analizler, Türkiye’nin güneyinde bulunan Isparta Orman Bölge Müdürlüğü sınırları içindeki Pamucak Orman Planlanma Ünitesi’nde seçilen 17 bölmenin sayısal verileri kullanılarak yapılmıştır. Elde edilen sonuçlara göre, test alanında, gerçek ortalama sürütme mesafesi ile en kısa ortalama sürütme mesafesi arasındaki ortalama fark 24 m olarak bulunmuştur. Bu çalışmada hesaplanan gerçek ortalama sürütme mesafesi değerinin, üretim operasyonlarında kullanılan gerçek sürütme mesafesine çok yakın bir değer olduğu düşünülmektedir.

CBS araçları ile eğimli arazilerde ortalama sürütme mesafesinin hesaplanması

To determine skidding productivity and costs for skidding operation, it is necessary to estimate real skidding route and to calculate average skidding distance. This study was intended to expose how the real average skidding distance was to be calculated and which operation process was to be followed up for harvesting units/blocks having irregular shapes as three dimensions. Compartments, harvesting stands, were divided into sub-compartment polygons called harvesting blocks with respect to transport borders determined according to road location, stream flow, and topographic structure of mountainous terrain. To calculate average skidding distance based on surface length between the most suitable existing road segments and centroids of the polygons, a selective process was followed. In this study, vector and raster Geographic Information System (GIS) tools were used. To compare with other approaches and evaluate of the calculus algorithm, various skidding distance determination strategy were improved and applied on the same test area. In this study, spatial analyses have been made for 17 compartments selected from Pamucak Forest Planning Unit of Isparta Forest Region, in Southern of Turkey. According to the results the mean difference between real average skidding distance (ASDR) and shortest average skidding distance (ASDS) was found amount 24 meters for the test area. It has been considered that the ASDR amount calculated in this study is too close to real skidding distance used for harvesting operations.

___

  • Balcı, İ., Çoban, H. O., Eker, M., 2000. Geographic Information System. Süleyman Demirel University, Faculty of Forestry Journal, A (1), 115-132.
  • Bayoğlu, S., 1972. A study on forest transportation and development possibilities. Istanbul University, Faculty of Forestry, 1747/185, 73p.
  • Contreras, M. and Chung, W., 2007. Computer approach to finding an optimal log landing location and analyzing influencing factors for ground-based timber harvesting. Canadian Journal of Forest Research, 37(2), 276-292.
  • Clark, M.M., 1998. The forest harvesting problem: integrating operational and tactical planning. Auburn University, Industrial and System Engineering (PhD dissertation), USA, 296 p.
  • CRWR, 2011. ArcHydro: GIS for water resources, center for research in water resources. University of Texas at Austin, http://www.crwr.utexas.edu/giswr/hydro/, (Last visit:16 April 2011), USA.
  • Çoban, H.O., 2004. Production of thematic forest maps supported by computer system. Süleyman Demirel University, Faculty of Forestry Journal, A (2), 83-96.
  • Donnelly D.M., 1978. Computing average skidding distance for logging areas with irregular boundaries and variable log density. GTR-RM-58, Rocky Mountain Forest and Range Experiment Station Forest Service, USDA, 10 p.
  • Eker, M., 2004. Development of annual operational planning model for timber harvesting. Karadeniz Technical University (PhD dissertation), Trabzon, 239 p.
  • Eker, M., Çoban, H.O., 2010. Impact of road network on the structure of a multifunctional forest landscape unit in southern Turkey. Journal of Environmental Biology, 31:157-168.
  • Eker, M., 2011. Assessment of procurement systems for unutilized logging residues for Brutian pine forest of Turkey. African Journal of Biotechnology, 10(13):2455-2468.
  • Erdaş, O., 1997. Forest roads –Vol.1. Karadeniz Technical University, Faculty of Forestry, Trabzon, 187/25, 390 p.
  • ESRI, 2011. ArcGIS Desktop software characteristics. Environmental Systems Research Institute, www.esri.com (Last visit: 15 July 2011).
  • Garner, G.J., 1979. Cut-block area and average primary transport distance. Internal Report of the Forest Engineering Research Institute of Canada, Pointe Claire, Quebec, 10 p.
  • Greulich, F.E., 1987. The quantitative description of cable yarder settings - parameters for the triangular setting with apical landing. For. Sci. 33(3):603-616.
  • Greulich, F.E., 1995. Road network design: optimal economic connection of three horizontal control points on flat, uniform terrain. J. For. Eng. 7(1):73-82.
  • Greulich, F.E., 1997. An algorithm for optimal centralized landing location: rectilinear yarding operations on flat uniform terrain. Canadian Journal of Forest Research, 27(8):1192-1197.
  • Kluender, R., Weih, R., Corrigan, M., and Pickett, J., 2000. The use of a geographic information system in harvest landing location for ground-based skidding operations. Forest products journal, 50(3):87-92.
  • Liu, S. and Corcoran, T.J., 1993. Road and landing spacing under the consideration of surface dimension of road and landings. Journal of Forest Engineering, 5(1):49-53.
  • Lussier, L.J., 1961. Planning and control of logging operations. Forest Research Foundation, Laval Universty, Quebec,135 p.
  • Mathews, D. M., 1942. Cost control in the logging industry. McGraw-Hill. Peters, P.A., 1978. Spacing of roads and landings to minimize timber harvest cost. Forest Science, 24 (2), 209-217.
  • Sessions, J. and Guangda. L., 1987. Deriving optimal road and landing spacing with microcomputer programs. Western J of Applied Forestry, 2 (3), 94-98.
  • Suddarth, SK. and Herrick. A.M., 1964. Average skidding distance for theoretical analysis of logging costs. Research Bulletion, 789 Purdue University Experiment Station.
  • Sundberg, U. and Silversides, C.R., 1988. Operational efficinecy in forestry. Kluwer Academic Publishers, 216 p.
  • Thompson, M.A., 1992. Considering overhead costs in road and landing spacing models. Journal of Forest Engineering, 3(2), 13–19.
  • Tucek, J. ve Pacola, E., 1999. Algorithms for skidding distance modeling on a raster digital terrain model. Journal of Forest Engineering, 10(1), 67-79.
  • Tucek, J. and Pacola, R., 2005. Spatial decision support system for laying out forest roads on the basis of skidding distances modeling. Special Issue of the Journal Nova Meh. Sumar., 26(2), 97-102.
  • Twito, R.H. and Mann, C.N., 1979. Determining average yarding distance. GTR-PNW-79, Pacific Northwest Forest and Range Experiment Station Forest Service, USDA, 29 p.