The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources

Öz The health status of Pelophylax ridibundus species living in anthropogenic pollution sources in Erzurum (Turkey) were investigated. Firstly, heavy metal concentrations in liver of the frog species, and in water and sediment samples taken from the habitats of the frogs were determined by instrumental analysis. Secondly, morphometric (fluctuating asymmetry-FA, hepatosomatic index-HSI) and erythrometric analyses were performed to reveal the health status of the frogs in the areas. Our study provides the first morphometric datas on the frog in Turkey. Although the metal concentrations in the water were high, it was determined that they did not exceed the limit values. However, Cr, Ni, Zn, and As metal concentrations in the sediment were determined to be above the acceptable level. It was also found that some metals accumulated in the livers of the frog due to heavy metal pollution. On the other hand, the FA, HSI values and the erythrocytic nuclear abnormality frequency increased in the frogs living in polluted stations. Moreover, erythrocyte size decreased and nucleated erythrocyte, mitotic erythrocyte, pycnotic erythrocyte, and immature erythrocyte frequencies increased. It was found that there was a correlation between the presence of pollution and the health status of the frogs, and the frog populations were affected negatively by anthropogenic pollution.

Kaynakça

Alnoaimi F, Dane H, Şişman T (2021). Histopathologic and genotoxic effects of deltamethrin on marsh frog, Pelophylax ridibundus (Anura: Ranidae). Environmental Science and Pollution Research28 (3): 3331-3343. doi: 10.1007/s11356-020-10711-5

Arikan H, Olgun KI, Çevik EC, Tok V (1998). A taxonomical study on the Rana ridibunda Pallas, 1771 (Anura: Ranidae) population from Ivriz-Eregli (Konya). Turkish Journal of Zoology 22 (3): 181-184.

Arıkan H, Çevik İE, Kaya U, Mermer A (2001). Erythrocytes measurements on Anatolian mountain frogs. Anadolu University Journal of Science Technology 2: 387-391.

Arserim S, Mermer A (2008). Hematology of the Uludağ frog Rana macrocnemis Boulenger, 1885 in Uludağ National Park (Bursa, Turkey). Turkish Journal of Fisheries and Aquatic Sciences 25 (1): 39-46

Atatür MK, Arıkan H, Çevik İE (1999). Erythrocyte sizes of some anurans from Turkey. Turkish Journal of Zoology 23 (2): 111-114.

Aydoğan Z, Gürol A, İncekara Ü (2016). The investigation of heavy element accumulation in some Hydrophilidae (Coleoptera) species. Environmental Monitoring and Assessment188 (4): 204. doi: 10.1007/s10661-016-5197-3

Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017). Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews4 (1): 37-59.

Bickham JW, Sandhu S, Hebert PD, Chikhi L, Athwal R (2000). Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutation Research/Reviews in Mutation Research 463 (1): 33-51.

Borković-Mitić SS, Prokić MD, Krizmanić II, Mutić J, Trifković J et al. (2016). Biomarkers of oxidative stress and metal accumulation in marsh frog (Pelophylax ridibundus). Environmental Science and Pollution Research23 (10): 9649-9659. doi: 10.1007/s11356-016-6194-3

Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C et al. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Science of the Total Environment 247 (2-3): 295-311. doi:10.1016/s0048-9697(99)00499-4

Carrasco KR, Tilbury KL, Myers MS (1990). Assessment of the piscine micronuclei test as an in situ biological indicator of chemical contaminant effects. Canadian Journal of Fisheries and Aquatic Sciences 47 (11): 2123-2136. doi: 10.1139/f90-237

Chamarthi RR, Bangeppagari M, Gooty JM, Mandala S, Tirado JO et al. (2014). Histopathological alterations in the gill, liver and brain of Cyprinus carpio on exposure to quinalphos. American Journal of Life Sciences 2 (4): 211-216. doi: 10.11648/j.ajls.20140204.14

Corduk N, Hacioglu-Dogru N, Gul C, Tosunoglu M (2018). Monitoring of micronuclei and nuclear abnormalities in Pelophylax ridibundus erythrocytes from the Biga Stream (Canakkale, Turkey). Fresenius Environmental Bulletin 27 (1): 147-153.

Dane H (2018). Bio-cological, toxicological and histological investigations on some Cyprinidae species from the fish fauna of Karasu River. Phd, Atatürk University, Erzurum, Turkey (in Turkish).

Dane H, Şişman T (2020). Effects of heavy metal pollution on hepatosomatic ındex and vital organ histology in Alburnus mossulensis from Karasu River. Turkish Journal of Veterinary and Animal Sciences44 (3): 607-617. doi: 10.3906/vet-1904-50

Duellman WE, Trueb EL (1994). Biology of Amphibians. 1st ed. Baltimore, USA: John Hopkins University Press.

Erhunmwunse NO, Ekaye SA, Ainerua MO, Ewere EE (2014). Histopathological changes in the brain tissue of Africa catfish exposure to glyphosate herbicide. Journal of Applied Science and Environmental Management 18 (2): 275-280. doi: 10. 4314/jasem.v18i2.19

Fenech M (2000). The in vitro micronucleus technique. Mutation Research 455 (1-2): 81-95. doi: 10.1016/s0027-5107(00)00065-8

Gómez Meda BC, Zamora Pérez AL, Luna Aguirre J, González Rodríguez A, Ramos Ibarra ML et al. (2006). Nuclear abnormalities in erythrocytes of parrots (Aratinga canicularis) related to genotoxic damage. Avian Pathology 35 (3): 206-210. doi: 10.1080/03079450600711003

Grant EHC, Miller DA, Schmidt BR, Adams MJ, Amburgey SM et al. (2016). Quantitative evidence for the effects of multiple drivers on continentalscale amphibian declines. Scientific Reports 23 (6): 25625. doi: 10.1038/srep25625

Guilherme S, Valega M, Pereira ME, Santos MA, Pacheco M (2008). Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicology and Environmental Safety 70 (3): 411-421. doi: 10.1016/j.ecoenv.2007.08.016

Guo R, Zhang W, Ai S, Ren L, Zhang Y (2017). Fluctuating asymmetry rather than oxidative stress in Bufo raddei can be an accurate indicator of environmental pollution induced by heavy metals. Environmental Monitoring and Assessment 189 (6): 189-293. doi: 10.1007/s10661-017-5991-6

Häder DP, Banaszak AT, Villafañe VE, Narvarte MA, González RA et al. (2020). Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of the Total Environment 713: 136586. doi: 10.1016/j.scitotenv.2020.136586

Houlahan JE, Findlay CS, Schmidt BR, Meyers AH, Kuzmin SL (2000). Quantitative evidence for global amphibian population declines. Nature 404 (6779): 752-755. doi: 10.1038/35008052

Jha AN (2008). Ecotoxicological applications and significance of the comet assay. Mutagenesis 23 (3): 207-221. doi: 10.1093/mutage/gen014

Kuru M (editor) (2020). Vertebrates. 12nd ed. Ankara, Turkey: Palme Press (in Turkish).

Lajmanovich RC, Cabagna-Zenklusen MC, Attademo AM, Junges CM, Peltzer PM et al. (2014). Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 769: 7-12. doi: 10.1016/j.mrgentox.2014.04.009

MacDonald DD, Ingersoll CG, Berger TA (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39 (1): 20-31. doi: 10.1007/ s002440010075

Masindi V, Muedi KL (2018). Environmental contamination by heavy metals. In: Saleh HED, Aglan RF (editors). Heavy Metals.1st ed. London, UK: IntechOpen, pp. 115-132.

Mohammadi Z, Khajeh A, Ghorbani F, Kami HG (2015). A biosystematic study of new records of the marsh frog Pelophylax ridibundus (Pallas, 1771) (Amphibia: Ranidae) from the southeast of Iran. Journal of Asia-Pacific Biodiversity8 (2): 178-182. doi: 10.1016/j.japb.2015.04.001

Moiseenko TI, Morgunov BA, Gashkina NA, Megorskiy VV, Pesiakova AA (2018). Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: case study of the Murmansk region, northwest of the Kola Peninsula, Russia. Environmental Research Letters13 (6): 065005. doi: 10.1088/1748-9326/aab5d2

Møller AP, Swaddle JP (2002). Asymmetry, Developmental Stability and Evolution. 2nd ed. Oxford, UK: Oxford University Press.

Montalvão MF, Da Silva Castro AL, De Lima Rodrigues AS, De Oliveira Mendes B, Malafaia G (2018). Impacts of tannery effluent on development and morphological characters in a neotropical tadpole. Science of the Total Environment610: 1595-1606. doi: 10.1016/j.scitotenv.2017.06.134

Özgül CN, Kurtul D, Çiğdem G (2020). Haematological and genotoxicological research on Pelophylax ridibundus and Bufotes variabilis living around the Çan (Çanakkale, Turkey). Turkish Journal of Bioscience and Collections4 (2): 105-111. doi: 10.26650/tjbc.20200011

Özdemir ZK (2014). Investigation of the effects of domestic and industrial pollution in Kocabaş Stream (Çanakkale) on fresh water mullet (Leuciscus cephalus L., 1758) using biomarkers. Ms, Çanakkale Onsekiz Mart University, Çanakkale, Turkey (in Turkish).

Peltzer PM, Lajmanovich RC, Attademo AM, Junges CM, Cabagna-Zenklusen MC et al. (2013). Effect of exposure to contaminated pond sediments on survival, development, and enzyme and blood biomarkers inveined treefrog(Trachycephalus typhonius) tadpoles. Ecotoxicology and Environmental Safety 98: 142-151. doi: 10.1016/j.ecoenv.2013.09.010

Peskova TY, Zhukova TI (2007). The usage of amphibians for bio-indication of water pollution. Science Kuban 2: 22-25.

Pollo FE, Bionda CL, Salinas ZA, Salas NE, Martino AL (2015). Common toad Rhinella arenarum (Hensel, 1867) and its importance in assessing environmental health: test of micronuclei and nuclear abnormalities in erythrocytes. Environmental Monitoring and Assessment 187 (9): 581. doi: 10.1007/s10661-015-4802-1

Pollo FE, Grenat PR, Otero MA, Salas NE, Martino AL (2016). Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine. Ecotoxicology and Environmental Safety 133: 466-474. doi: 10.1016/j.ecoenv.2016.08.003

Pollo FE, Grenat PR, Otero MA, Babini S, Salas NE et al. (2019). Evaluation in situ of genotoxic and cytotoxic response in the diploid/polyploid complex Odontophrynus (Anura: Odontophrynidae) inhabiting agroecosystems. Chemosphere216: 306-312. doi: 10.1016/j.chemosphere

Pyle GG, Rajotte JW, Couture P (2005). Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotoxicology and Environmental Safety 61 (3): 287-312. doi: 10.1016/j.ecoenv.2004.09.003

Qureshi IZ, Kashif Z, Hashmi MZ, Su X, Malik RN et al. (2015). Assessment of heavy metals and metalloids in tissues of two frog species: Rana tigrina and Euphlyctis cyanophlyctis from industrial city Sialkot, Pakistan. Environmental Science and Pollution Research 22 (18): 14157-14168. doi: 10.1007/s11356-015-4454-2

Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A et al. (2012). Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicology in Vitro 26 (2): 351-361. doi: 10.1016/j.tiv.2011.12.011

Shaapera U, Nnamonu LA, Eneji IS (2013). Assessment of heavy metals in Rana esculenta organs from River Guma, Benue State Nigeria. American Journal of Analytical Chemistry 4 (9): 496-500. doi: 10.4236/ajac.2013.49063

Sönmez, AY, Haşıloğlu S, Hisar O, Aras Mehan HN, Kaya H (2013). Fuzzy logic evaluation of water quality classification for heavy metal pollution in Karasu Stream, Turkey. Ekoloji 22 (87): 43-50 (in Turkish). doi: 10.5053/ekoloji.2013.876

Spirina EV (2009). Morpho-physiological adaptations in Rana ridibunda Pall. under the influence of pollution. Bulletin of the Altai State Agrarian University 12 (62): 64-68.

SWQR (2015). Turkey’s Ministry of Forestry and Water Affairs Surface Water Quality Regulations. Official Gazette, No: 29327 (in Turkish). Ankara, Turkey: Official Gazette of the Republic of Turkey.

Şişman T, Aşkın H, Turkez H, Ozkan H, Incekara U et al. (2015). Determination of nuclear abnormalities in peripheral erythrocytes of the frog Pelophylax ridibundus (Anura: Ranidae) sampled from Karasu River Basin (Turkey) for pollution impacts. Journal of Limnology and Freshwater Fisheries Research 1 (2): 75-81.

Şişman T, Keskin MÇ, Dane H, Adil Ş, Geyikoğlu F et al. (2021). Marsh frog (Pelophylax ridibundus) as a bioindicator to assess pollution in an agricultural area. Pakistan Journal of Zoology 53 (1): 337-349. doi: 10.17582/journal.pjz/20190103130130

Thammachoti P, Khonsue W, Kitana J, Varanusupakul P (2012). Morphometric and gravimetric parameters of the rise frog Fejervarya limnocharis living in areas with different agricultural activity. Journal of Environmental Protection 3 (10): 1403-1408. doi: 10.4236/jep.2012.310159

Toroğlu E, Toroğlu S, Alaeddinoğlu F (2006). Water pollution in the Aksu River (Kahramanmaraş). Coğrafi Bilimler Dergisi 4 (1): 93-103 (in Turkish).

Whittaker K, Koo MS, Wake DB, Vredenburg VT (2013). Global declines of amphibians. In: Levin SA (editor). Encyclopedia of Biodiversity. 2nd ed. Cambridge, MA, USA: Elsevier Incorporation (Academic Press), pp. 691-699.

Wojtaszek, J, Adamowicz A (2003). Haematology of the fire-bellied toad, Bombina bombina L. Comparative Clinical Pathology 12 (3): 129-134. doi: 10.1007/s00580-003-0482-2

Zakharov VM (2001). Ontogeny and population (the stability of development and population variability). Ecology 3: 177-191.

Zhelev ZM, Popgeorgiev GS, Angelov MV (2013). Investigating the changes in the morphological content of the blood of Pelophylax ridibundus (Amphibia: Ranidae) as a result of anthropogenic pollution and its use as an environmental bioindicator. Acta Zoologica Bulgarica 65 (2): 187-196.

Zhelev Z, Arnaudov A, Boyadzhiev P (2014a). Colour polymorphism, sex ratio and age structure in the populations of Pelophylax ridibundus and Pseudepidalea viridis (Amphibia: Anura) from anthropogenically polluted biotopes in southern Bulgaria and their usage as bioindicators. Trakia Journal of Sciences1: 1-12.

Zhelev ZM, Popgeorgiev GS, Georgieva ZK (2014b). Fluctuating asymmetry in the populations of Pelophylax ridibundus and Pseudepidalea viridis (Amphibia: Anura) in the region of the lead and zinc plant “Kardzhali” (South Bulgaria). Acta Zoologica Bulgarica 66 (1): 83-87.

Zhelev ZM, Popgeorgiev GS, Mehterov NH (2015a). Changes in the hepatosomatic index and condition factor in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in Southern Bulgaria. Part II. Bulgarian Journal of Agricultural Science 21 (3): 534-539.

Zhelev ZM, Popgeorgiev GS, Arnaudov AD, Georgieva KN, Mehterov NH (2015b). Fluctuating asymmetry in Pelophylax ridibundus (Amphibia: Ranidae) as a response to anthropogenic pollution in South Bulgaria. Archives of Biological Sciences 67 (3): 1009-1023.

Zhelev ZM, Mehterov NH, Popgeorgiev GS (2016). Seasonal changes of basic erythrocyte-metric parameters in Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in Southern Bulgaria and their role as bioindicators. Ecotoxicology and Environmental Safety 124: 406-417. doi: 10.1016/j.ecoenv.2015.11.011

Zhelev ZM, Tsonev CV, Arnaudova DN (2017a). Health status of Pelophylax ridibundus (Pallas, 1771) (Amphibia: Ranidae) in a rice paddy ecosystem in southern Bulgaria: body condition factor and fluctuating asymmetry. Acta Zoologica Bulgarica 69 (Suppl. 8): 169-177.

Zhelev Z, Popgeorgiev G, Ivanov I, Boyadzhiev P (2017b). Changes o erythrocyte-metric parameters in Pelophylax ridibundus (Amphibia: Anura: Ranidae) inhabiting water bodies with different types of anthropogenic pollution in Southern Bulgaria. Environmental Science and Pollution Research 24 (21): 17920-17934. doi: 10.1007/s11356-017-9364-z

Zhelev Z, Tsonev C, Georgieva K, Arnaudova D (2018). Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in Southern Bulgaria and its importance in assessing environmental state: haematological parameters. Environmental Science and Pollution Research 25 (8): 7884-7895. doi: 10.1007/s11356-017-1109-5

Kaynak Göster

Bibtex @araştırma makalesi { tbtkzoology972832, journal = {Turkish Journal of Zoology}, issn = {1300-0179}, eissn = {1303-6114}, address = {}, publisher = {TÜBİTAK}, year = {2021}, volume = {45}, pages = {314 - 328}, doi = {}, title = {The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources}, key = {cite}, author = {Dönmez, Mesut and Şişman, Turgay} }
APA Dönmez, M , Şişman, T . (2021). The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources . Turkish Journal of Zoology , 45 (4) , 314-328 .
MLA Dönmez, M , Şişman, T . "The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources" . Turkish Journal of Zoology 45 (2021 ): 314-328 <
Chicago Dönmez, M , Şişman, T . "The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources". Turkish Journal of Zoology 45 (2021 ): 314-328
RIS TY - JOUR T1 - The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources AU - Mesut Dönmez , Turgay Şişman Y1 - 2021 PY - 2021 N1 - DO - T2 - Turkish Journal of Zoology JF - Journal JO - JOR SP - 314 EP - 328 VL - 45 IS - 4 SN - 1300-0179-1303-6114 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Zoology The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources %A Mesut Dönmez , Turgay Şişman %T The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources %D 2021 %J Turkish Journal of Zoology %P 1300-0179-1303-6114 %V 45 %N 4 %R %U
ISNAD Dönmez, Mesut , Şişman, Turgay . "The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources". Turkish Journal of Zoology 45 / 4 (Temmuz 2021): 314-328 .
AMA Dönmez M , Şişman T . The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources. Turkish Journal of Zoology. 2021; 45(4): 314-328.
Vancouver Dönmez M , Şişman T . The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources. Turkish Journal of Zoology. 2021; 45(4): 314-328.
IEEE M. Dönmez ve T. Şişman , "The morphometric and erythrometric analyses of Pelophylaxridibundus living in anthropogenic pollution resources", Turkish Journal of Zoology, c. 45, sayı. 4, ss. 314-328, Tem. 2021