Fractal analysis of structural differences of otolith microrelief in closely related and distant Baikal ichthyotaxa

Fractal analysis of structural differences of otolith microrelief in closely related and distant Baikal ichthyotaxa

Fractal analysis helped find differences in species in the organisation of fish otolith crystalline surfaces in 2 closely relatedand 2 distant species. To determine regularities of this organisation, we used the microcanonical method of multifractal spectra. It wasrevealed that the differences of multifractal spectra were more significant for longer distances of taxonomic divergence.

___

  • Allemand D, Mayer-Gostan N, de Pontual H, Boeuf G, Payan P (2007). Fish otolith calcification in relation to endolymph chemistry. In: Bäuerlein E, editor. Handbook of Biomineralization. Biological Aspects and Structure Formation. Weinheim, Germany: Wiley-VCH, pp. 291-308.
  • Campana SE (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188: 263-297.
  • Campana SE, Thorrold SR (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58: 30-38.
  • De Yoreo JJ, Dove PM (2004). Shaping crystals with biomolecules. Science 306: 1301-1302.
  • Feder J (1991). Fractals. Moscow, Russia: Mir.
  • Fernald RD (1988). Aquatic adaptation in fish eyes. In: Atena J, Fay RR, Popper AN, Tavolga WN, editors. Sensory Biology of Aquatic Animals. New York, NY, USA: Springer, pp. 435-466.
  • Gago FJ (1993). Morphology of the saccular otoliths of six species of lanternfishes of the genus Symbolophorus (Pisces: Myctophidae). B Mar Sci 52: 949-960.
  • Gilbert P, Abrecht M, Frazer B (2005). The organic-mineral interface in biominerals. Rev Mineral Geochem 59: 157-185.
  • Godzhaev E, Abasov A, Aliyeva S, Charuxcev D (2014). The surface fractal structure of fish scales. Open Journal of Inorganic NonMetallic Materials 4: 7-11. Huuskonen Н (1999). Is otolith microstructure affected by latitude? Mar Ecol Prog Ser 177: 309-310.
  • Ibsch M, Nindl G, Anken RH, Körtje KH, Rahmann H (1998). Ultrastructural aspects of otoliths and sensory epithelia of fish inner ear exposed to hypergravity. Adv Space Res 22: 287-291.
  • Isaeva VV (2003). Synergetics for Biologists. Vladivostok, Russia: Far Eastern State University (in Russian).
  • Jenkins DB (1981). The utricle in Ictalurus punctatus. In: Tavolga WN, Popper AN, Fay RR, editors. Hearing and Sound Communication in Fishes. New York, NY, USA: Springer Verlag, pp. 73-81.
  • Jitpukdee S, Wannitikul P (2004). Sagitta morphology and crystalline structure on sulcus acusticus in Nemipterus spp. from coastal of Thailand. In: Shaw J, Lubelska D, Noullet M, editors. Proceedings of the 4th Asian Microscopy Conference and the 3rd Vietnam Conference on Electron Microscopy 2004; 5–6 January 2004; Hanoi, Vietnam, pp. 127-133.
  • Jitpukdee S, Wannitikul P (2009). Crystalline structure of sagittal otoliths from 8 fish species in different habitats. Journal of Microscopy Society of Thailand 23: 57-61.
  • Knyazeva IC, Makarenko NG (2009). Mul’tifraktal’nyj analiz izobrazhenij. Izvestiya Vuzov/Prikladnaja Nelinejnaja Dinamika 4: 85-99 (in Russian).
  • Lewis M, Rees DC (1985). Fractal surfaces of proteins. Science 230: 1163-1165.
  • Lowenstam HA (1981). Minerals formed by organisms. Science 211: 1126-1131.
  • Mandelbrot BB (1983). The Fractal Geometry of Nature. New York, NY, USA: W.H. Freeman and Company.
  • Mendoza RP (2006). Otoliths and their applications in fishery science. Ribarstvo 64: 89-102.
  • Mount AS, Wheeler AP, Paradkar RP, Snider D (2004). Hemocytemediated shell mineralization in the eastern oyster. Science 304: 297-300.
  • Parkinson IH, Fazzalari NL (2000). Methodological principles for fractal analysis of trabecular bone. J Microsc-Oxford 198: 134- 142.
  • Paxton JR (2000). Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philos T Roy Soc B 55: 1299-1303.
  • Pitcher TJ (1986). Behaviour of Teleost Fishes. London, UK: Croom Helm.
  • Popper AN, Fay RR (1993). Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41: 14-38.
  • Popper AN, Lu Z (2000). Structure-function relationships in fish otolith organs. Fish Res 46: 15-25.
  • Popper AN, Platt C (1993). Inner ear and lateral line. In: Evans DH, editor. The Physiology of Fishes. Boca Raton, FL, USA: CRC Press, pp. 99-136.
  • Popper AN, Ramcharitar JU, Campana SE (2005). Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshwater Res 56: 497-504.
  • Retzius G (1881). Das Gehörorgan der Wirbelthiere: I. Das Gehörorgan der Fische und Amphibien. Stockholm, Sweden: Samson and Wallin (in German).
  • Secor DH, Dean JM, Laban EH (1991). Manual for Otolith Removal and Preparation for Microstructural Examination. Baruch Institute Technical Report 19-1. Columbia, SC, USA: University of South Carolina.
  • Sharma A, Shinde UP, Kulkarn BD (1990). Effect of fractal nature on enzymatic reactions. Biotechnol Lett 12: 737-742.
  • Smale MJ, Watson G, Hecht T (1995). Otolith Atlas of Southern African Marine Fishes. Ichthyological Monographs of the JLB. Grahamstown, South Africa: Smith Institute of Ichthyology.
  • Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003). Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302: 282-286.
  • Turiel A, Parga N (2000). The multi-fractal structure of contrast changes in natural images: from sharp edges to textures. Neural Comput 12: 763.
  • Volpedo A, Echevarría D (2003). Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fish Res 60: 551-560.
  • Volpedo A, Tombari A, Echeverría D (2008). Ecomorphological patterns of the sagitta of Antarctic. Polar Biol 31: 635-640.