Developmental differences of local populations of alfalfa weevil (Hypera postica) (Coleoptera: Curculionidae)

Developmental differences of local populations of alfalfa weevil (Hypera postica) (Coleoptera: Curculionidae)

Many invasive insect pests show phenotypic variation between local populations across their geographical range. Understanding and integrating such differences will help to improve pest management. Population differences are the result of local adaptation to environmental conditions and may be detected using ecological analyses. Immature stages may represent especially interesting study objects as they represent important stages in the life cycle of insects and in many cases may be the most destructive stage. The alfalfa weevil, Hypera postica (Gyllenhal, 1813), is a variable worldwide pest that heavily damages alfalfa fields and is widely distributed in Iran. The lack of information about Iranian populations of H. postica has motivated us to examine immature life stages of three western populations (Karaj, Hamedan, Tuyserkan) and one eastern population (Jovein) under laboratory conditions. We measured the percentage of survival and the developmental times of each immature stage. The results suggested that the mean duration of the pupa stage significantly differs among the eastern population and all western populations (P < 0.005). Egg survivorship was lower in the eastern population (72.5%). The importance of differences in development times between populations is discussed in regards of pest management strategies.

___

  • Ardakani MA, Emadi MH (2008). Traditional knowledge of Iranian farmers on biological pest management. Indian Journal of Traditional Knowledge 7: 676-678.
  • Armbrust EJ, White CE, Dewitt JR (1969). Lethal limits of low temperature for the alfalfa weevil in Illinois. J Econ Entomol 62: 464-467.
  • Bentz B, Logan J, Vandygriff J (2001). Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size. Can Entomol 133: 375-387.
  • Bland R (1984). Mouthpart sensilla and mandibles of the adult alfalfa weevil Hypera postica and the Egyptian alfalfa weevil H. brunneipennis (Coleoptera: Curculionidae). Ann Entomol Soc Am 77: 720-724.
  • Blodgett S, Lenssen A, Cash S (2000). Harvest with raking for control of alfalfa weevil (Coleoptera: Curculionidae). J Entomol Sci 35: 129-135.
  • Blodgett SL, Lenssen AW (2004). Distribution of alfalfa weevil (Coleoptera: Curculionidae) larvae among postcutting locations. J Econ Entomol 97: 1319-1322.
  • Böttger JAA, Bundy CS, Oesterle N, Hanson SF (2013). Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J Econ Entomol 106: 426-436.
  • Brosius F (2011). SPSS 19. Heidelberg, Germany: Hüthig Jehle Rehm.Bundy CS, Smith PF, English LM, Sutton D, Hanson S (2005). Strain distribution of alfalfa weevil (Coleoptera: Curculionidae) in an intergrade zone. J Econ Entomol 98: 2028-2032.
  • Casagrande RA, Stehr FW (1973). Evaluating the effects of harvesting alfalfa on alfalfa weevil (Coleoptera: Curculionidae) and parasite populations in Michigan. Can Entomol 105: 1119-1128.
  • Chandra A, Pandey KC (2011). Assessment of genetic variation in lucerne (Medicago sativa L.) using protease inhibitor activities and RAPD markers. J Environ Biol 32: 559-565.
  • Coles L, Day W (1977). The fecundity of Hypera postica from three locations in the eastern United States. Environ Entomol 6: 211-212.
  • Davis DW (1970). Insecticidal control of the alfalfa weevil in northern Utah and some resulting effects on the weevil parasite Bathyplectes curculionis. J Econ Entomol 63: 119-125.
  • Dewitt JR, Armbrust EJ (1972). Photoperiodic sensitivity of the alfalfa weevil during larval development. J Econ Entomol 65: 1289-1292.
  • Goosey HB, Hatfield P, Blodgett S, Cash S (2004). Evaluation of alfalfa weevil (Coleoptera: Curculionidae) densities and regrowth characteristics of alfalfa grazed by sheep in winter and spring. J Entomol Sci 39: 598-610.
  • Goosey HB (2012). A degree-day model of sheep grazing influence on alfalfa weevil and crop characteristics. J Econ Entomol 105: 102-112.
  • Harcourt D (1969). The development and use of life tables in the study of natural insect populations. Ann Entomol Soc Am 14: 175-196.
  • Hsiao C, Hsiao T (1985). Rickettsia as the cause of cytoplasmic incompatibility in the alfalfa weevil, (Hypera postica). J Invertebr Pathol 45: 244-246.
  • Hsaio TH (1996). Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In: Symondson WOC, Liddell JE, editors. The Ecology of Agricultural Pests. London, UK: Chapman and Hall, pp. 51-72.
  • Hsiao TH (1993). Geographic and genetic variation among alfalfa weevil strains. In: Kim KC, MacPheron BA, editors. Evolution of Insect Pests: Patterns of Variation. New York, NY, USA: John Wiley and Sons, pp. 310-323.
  • Khanjani M (2012). Field Crop Pests in Iran (Insects and Mites). 6th ed. Hamedan, Iran: Bu-Ali Sina University Publication (in Farsi).
  • Khanjani M, Pourmirza AA (2004). A comparison of various control methods of alfalfa weevil, Hypera postica (Col: Curculionidae) in Hamadan. J Entomol Soc Iran 1: 67-81.
  • Kuwata R, Tokuda M, Yamaguchi D, Yukawa J (2005). Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae). J Appl Entomol 129: 191-197.
  • Loxdale H, Brookes C (1990). Temporal genetic stability within and restricted migration (gene flow) between local populations of the blackberry-grain aphid Sitobion fragariae in south-east England. J Anim Ecol 59: 497-514.
  • Milbrath LR, Deloach CJ, Tracy JL (2007). Overwintering survival, phenology, voltinism, and reproduction among different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae). Environ Entomol 36: 1356-1364.
  • Moradi-Vajargah M, Golizadeh A, Rafiee-Dastjerdi H, Zalucki MP, Hassanpour M, Naseri B (2011). Population density and spatial distribution pattern of Hypera postica (Coleoptera: Curculionidae) in Ardabil, Iran. Not Bot Horti Agrobot Cluj Napoca 39: 42-48.
  • Moradi-Vajargah M, Rafiee-Dastjerdi H, Golizadeh A, Hassanpour M, Naseri B (2013). Laboratory toxicity and field efficacy of lufenuron, dinotefuran and thiamethoxam against Hypera postica (Gyllenhal, 1813) (Coleoptera: Curculionidae). Mun Ent Zool 8: 448-457.
  • National Geoscience Dataset of Iran (2015). Average Annual Precipitation Map. Tehran, Iran: Geological Survey and Mineral Exploration of Iran, Ministry of Industries and Mines. Available online at http://www.ngdir.ir/maps/AverageAnnualPrecipitationMap.asp.
  • Pienkowski RL, Hsieh FK, Lecato GL (1969). Sexual dimorphism and morphometric differences in the eastern, western, and Egyptian alfalfa weevils. Ann Entomol Soc Am 62: 1268-1269.
  • Pöckl M, Humpesch U (1990). Intra‐and inter‐specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshwater Biol 23: 441-455.
  • Radcliffe EB Flanders KL (1998). Biological control of alfalfa weevil in North America. Integrated Pest Manag Rev 3: 225-242.
  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstr NC (2001). The population biology of invasive species. Annu Rev Ecol Syst 32: 305-332.
  • Sanaei E, Seiedy M, de Castro AJV (2015a). Distribution of weevils (Coleoptera: Curculionidae) in alfalfa fields of Iran’s northern provinces with a new record for the country. Zool Ecol 25: 1-7.
  • Sanaei E, Seiedy M, Momtazi M (2015b). A uni- and multivariate analysis approach to reveal sexual size dimorphism in Iranian population of Hypera postica (Coleoptera: Curculionidae). Biologia 70: 1228-1233.
  • Sanaei E, Seiedy M, Momtazi M (2015c). Evolutionary view on shape variation and sexual dimorphism in Iranian populations of Hypera postica (Coleoptera: Curculionidae). Zoomorphology 134: 541-552.
  • Schroder RF, Steinhauer AL (1976). Effects of photoperiod and temperature regimens on the biology of European and United States alfalfa weevil populations. Ann Entomol Soc Am 69: 701-706.
  • Skuhrovec J (2006). Identification of instars of Hypera postica using chaetotaxy. J Econ Entomol 99: 2216-2218.
  • Skuhrovec J (2013). Hyperinae. In: Löbl I, Smetana A, editors. Catalogue of Palaearctic Coleoptera. Vol. 8. Stenstrup, Denmark: Apollo Books, p. 433.
  • Skuhrovec J, Štys P, Exnerová A (2014). Intraspecific larval aggression in two species of Hyperini (Coleoptera: Curculionidae). J Nat Hist 49: 1131-1146.
  • Summers CG (1998). Integrated pest management in forage alfalfa. Integrated Pest Manag Rev 3: 127-154.
  • Tang S, Cheke RA (2008). Models for integrated pest control and their biological implications. Math Biosci 215: 115-125.
  • Titus E (1909). The alfalfa leaf-weevil. J Econ Entomol 2: 148-154.
  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013). Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tiss Organ Cult 113: 227-235.
  • Zahiri B, Fathipour Y, Khanjani M, Moharramipour S, Zalucki MP (2010a). Modeling demographic response to constant temperature in Hypera postica (Coleoptera: Curculionidae). J Econ Entomol 103: 292-301.
  • Zahiri B, Fathipour Y, Khanjani M, Moharramipour S, Zalucki MP (2010b). Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environ Entomol 39: 177-189.
  • Zahiri B, Fathipour Y, Khanjani M, Moharramipour S, Zalucki MP (2014). Alternatives to key factor analyses for assessing the population dynamics of Hypera postica (Coleoptera: Curculionidae). Popul Ecol 56: 185-194.
  • Zehzad B, Kiabi BH, Madjnoonian H (2002) The natural areas and landscape of Iran: an overview. Zool Middle East 26: 7-10.
  • Živković B, Radović J, Sokolović D, Šiler B, Banjanac T, Štrbanović R (2012). Assessment of genetic diversity among alfalfa (Medicago sativa) genotypes by morphometry, seed storage proteins and RAPD analysis. Ind Crops Prod 40: 285-291.