Amylase in the hepatopancreas of a euryhaline burrowing crab: characteristics and modulation

Amylase in the hepatopancreas of a euryhaline burrowing crab: characteristics and modulation

In spite of its inherent physiological importance, studies on the occurrence, characteristics, and modulation of amylase ineuryhaline crabs are lacking. We investigated the occurrence of amylase forms and the effect of acclimation to different salinities on theirnumber and made a partial purification and characterization of the major form present in the hepatopancreas ofNeohelice granulata .Zymogram analysis revealed 5 amylase forms in crabs acclimated to 35 psu (seawater) and 37 psu, and an additional band at 10 psu,but with a major form (29 kDa) in all cases, which was partially purified and characterized. Amylolytic activity was maximal between30 and 40 °C; maintained at high NaCl concentrations (up to 4 M); increased by 5 mM K + , Li + , Co 2+ , and Mg 2+(36% 45%); inhibited byCu 2+ , Zn 2+ , Cd 2+ , Fe 2+ , and Mn 2+(92.4% and 23.7%); not affected by Ni 2+or Ba 2+ ; and enhanced almost 100% by Ca 2+ . Amylase exhibitedMichaelis Menten kinetics (starch: K m= 1.24 mg mL1 ; glycogen: K m= 16.19 mg mL1 ). The potential physiological significance andrelationship to habitat conditions of the extra form in low salinity and the biochemical characteristics of the partially purified amylolyticactivity (halotolerant, differential sensitivity to ions, capability to hydrolyze starch and glycogen) are discussed.

___

  • Aragón-Axomulco H, Chiappa-Carrara X, Soto L, Cuzon G, Arena L, Maldonado C, Gaxiola G (2012). Seasonal variability in trypsin and α-amylase activities caused by the molting cycle and feeding habits of juvenile pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939). J Crust Biol 32: 89-99.
  • Asaro A, del Valle JC, López Mañanes AA (2011). Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Sci Mar 75: 517-524.
  • Asaro A, del Valle JC, López Mañanes AA (2014). Carbohydrase activities in the hepatopancreas of crab Neohelice granulata : differential long-term post-ingest responses under different salinities. Biocell 37: A22.
  • Bas C, Lancia JP, Luppi T, Méndez-Casariego A, Kittlein M, Spivak E (2014). Influence of tidal regime, diurnal phase, habitat and seasonal feeding of an intertidal crab. Mar Ecol 35: 319-333.
  • Beltrame MO, De Marco SG, Marcovecchio JE (2010). Influences of sex, habitat, and seasonality on heavy-metal concentrations in the burrowing crab ( Neohelice granulata ) from a coastal lagoon in Argentina. Arch Environ Con Tox 58: 746-756.
  • Beltrame MO, De Marco SG, Marcovecchio JE (2011). The burrowing crab Neohelice granulata as potential bioindicator of heavy metals in estuarine systems of the Atlantic coast of Argentina. Environ Monit Assess 172: 379-389.
  • Blandamer A, Beechey RB (1966). The purification and properties of an ex-amylase from the hepatopancreas of Carcinus maenas , the common shore crab. Bio chim Biophys Acta 118: 204-206.
  • Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VJ, Petersen SB, Swif H, Thim L, Woldike HF (1990). Calcium binding in α-amylases: an X-ray diffraction study at 2.1: a resolution of two enzymes from Aspergillus . Biochemistry 29: 6244-6249.
  • Borowsky R (1984). Environmental control of amylase phenotype in amphipods of the genus Gammarus . Biol Bull 167: 647-657.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Analyt Biochem 72: 248-254.
  • Carter CG, Mente E (2014). Protein synthesis in crustaceans: a review focused on feeding and nutrition. Cent Eur J Biol 9: 1-10.
  • Castro PF, Freitas ACV Jr, Santana WM, Costa HMS, Carvalho LB Jr, Bezerra RS (2012). Comparative study of amylases from the midgut gland of three species of penaeid shrimp. J Crust Biol 32: 607-613.
  • Coccia E, Varricchio E, Paolucci M (2011). Digestive enzymes in the crayfish Cherax albidus : polymorphism and partial characterization. International Journal of Zoology 2011: 310371.
  • D’Amico S, Gerday C, Feller G (2000). Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene 253: 95-105.
  • Date K, Satoh A, Iida K, Ogawa H (2015). Pancreatic α-amylase controls glucose assimilation by duodenal retrieval through N-glycan-specific binding, endocytosis, and degradation. J Biol Chem 290: 17439-17450.
  • del Valle JC, Busch C, López Mañanes AA (2006). Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A 145: 397-405.
  • del Valle JC, López Mañanes AA, Busch C (2004). Phenotypic flexibility of digestive morphology and physiology of the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A 139: 503-512.
  • Dutra BK, Zank C, Silva KMD, Conter MR, Oliveira GT (2008). Seasonal variations in the intermediate metabolism of the crayfish Parastacus brasiliensis (Crustacea, Decapoda, Parastacidae) in the natural environment and experimental culture. Iheringia Ser Zool 98: 355-361.
  • Dutta TK, Jana M, Pahari PR, Bhattacharya T (2006). The effect of temperature, pH, and salt on amylase in Heliodiaptomus viduus (Gurney) (Crustacea: Copepoda: Calanoida). Turk J Zool 30: 187-195.
  • Figueiredo MSRB, Anderson AJ (2009). Digestive enzyme spectra in crustacean decapods (Paleomonidae, Portunidae and Penaeidae) feeding in the natural habitat. Aquac Res 40: 282- 291.
  • Iribarne O, Bortolus A, Botto F (1997). Between-habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155: 132-145.
  • Karasov WH, Douglas AE (2013). Comparative digestive physiology. Compr Physiol 3: 271-283.
  • Karasov WH, Martínez del Rio C, Caviedes-Vidal E (2011). Ecological physiology of diet and digestive systems. Annu Rev Physiol 73: 69-93.
  • Kelly SA, Panhuis TM, Stoehr AM (2012). Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol 2: 1417-1439.
  • Kucharski LC, Schein V, Capp E, da Silva RS (2002). In vitro insulin stimulatory effect on glucose uptake and glycogen synthesis in the gills of the estuarine crab Chasmagnathus granulata . Gen Comp Endocr 125: 256-263.
  • Kültz D (2015). Physiological mechanisms used by fish to cope with salinity stress. J Exp Boil 218: 1907-1914.
  • Le Moullac G, Klein B, Sellos D, Van Wormhoudt A (1997). Adaptation of trypsin, chymotrypsin and α-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). J Expl Mar Biol Ecol 208: 107-125.
  • Li E, Chen L, Zeng C, Yu N, Xiong Z, Chen X, Qin JG (2008). Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei , at various salinities. Aquaculture 274: 80-86.
  • López Mañanes AA, Magnoni LJ, Goldemberg AL (2000). Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comp Biochem Physiol B 127: 85-95.
  • Lorenzon S, Edomi P, Giulianinim PG, Mettulio R, Ferrero EA (2005). Role of biogenic amines and CHH in the crustacean hyperglycemic stress response. J Exp Biol 208: 3341-3347.
  • Luppi T, Bas C, Méndez Casariego A, Albano M, Lancia J, Kittlein M, Rosenthal A, Farías N, Spivak E, Iribarne O (2013). The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (= Chasmagnathus) granulata . Helgol Mar Res 67: 1-5.
  • Mayzaud O (1985). The purification and kinetic properties of s-amylase from the copepod Acartia clausi (Giesbrecht, 1889). Comp Biochem Physiol 82: 725-730.
  • McNamara JC, Faria SC (2012). Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol B 182: 997-1014.
  • Michiels MS, del Valle JC, López Mañanes AA (2013). Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae). Sci Mar 77: 129-136.
  • Michiels MS, del Valle JC, López Mañanes AA (2015a). Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab. J Comp Physiol B 185: 501-510.
  • Michiels MS, del Valle JC, López Mañanes AA (2015b). Lipase activity sensitive to dopamine, glucagon and cyclic AMP in hepatopancreas of the euryhaline burrowing crab Neohelice granulata . Crustaceana 88: 51-65.
  • Mössner J, Böhm S, Fischbach W (1989). Role of glucocorticosteroids in the regulation of pancreatic amylase synthesis. Pancreas 4: 194-203.
  • Mössner J, Logsdon CD, Williams JA, Goldfine ID (1985). Insulin, via its own receptor, regulates growth and amylase synthesis in pancreatic acinar AR42J cells. Diabetes 34: 891-897.
  • Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014). Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii . Biol Trace Elem Res 160: 56-66.
  • Obi IE, Sterling KM, Ahearn GA (2011). Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus , intestine. J Exp Biol 214: 2337-2344.
  • Peng T, Wang D, Yu Y, Liu C, Zhu B (2015). Identification and expression of an ecdysteroid-responsive amylase from red crayfish Procambarus clarkii . Fisheries Sci 81: 345-352.
  • Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Alonso E, Carrillo O, Galich GS (2008a). Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus . Comp Biochem Physiol B 150: 247- 254.
  • Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero- Alejo V, Rodriguez-Viera L, Alonso E, Carrillo O, Galich GS (2008b). Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus . Comp Biochem Physiol B 151: 250-256.
  • Pfenning DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25: 459-467.
  • Piersma T, Drent J (2003). Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18: 228-233.
  • Pinoni SA, Goldemberg AL, López Mañanes AA (2005). Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus : response to environmental salinity. J Exp Mar Biol Ecol 326: 217-226.
  • Pinoni SA, Iribarne O, López Mañanes AA (2011). Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata . Comp Biochem Physiol A 158: 552-559.
  • Pinoni SA, López Mañanes AA (2004). Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus . J Exp Mar Biol Ecol 307: 35-46.
  • Pinoni SA, López Mañanes AA (2008). Partial characterization and response under hyperregulating conditions of Na + /K + -ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus . Sci Mar 72: 15-24.
  • Pinoni SA, López Mañanes AA (2009). Na + ATPase activities in chela muscle of the euryhaline crab Neohelice granulata : differential response to environmental salinity. J Exp Mar Biol Ecol 372: 91-97.
  • Pinoni SA, Mendez E, López Mañanes AA (2015). Digestive flexibility in a euryhaline crab from a SW Atlantic coastal lagoon: alkaline phosphatase activity sensitive to salinity in the hepatopancreas. J Mar Biol Assoc UK 95: 1133-1140.
  • Pinoni SA, Michiels MS, López Mañanes AA (2013). Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Mar Biol 160: 2647-2661.
  • Ribeiro K, Papa LP, Vicentini CA, Franceschini‐Vicentini IB (2014). The ultrastructural evaluation of digestive cells in the hepatopancreas of the Amazon River prawn, Macrobrachium amazonicum . Aquac Res 47: 1251-1259.
  • Rodríguez-Viera L, Perera E, Martos-Sitcha JA, Perdomo-Morales R, Casuso A, Montero-Alejo V, Garcia-Galano T, Martinez- Rodriguez G., Mancera JM (2016). Molecular, biochemical, and dietary regulation features of α-amylase in a carnivorous crustacean, the spiny lobster Panulirus argus . PLoS One 11: e0158919.
  • Romano N, Wu X, Zeng C, Genodepa J, Elliman J (2014). Growth, osmoregulatory responses and changes to the lipid and fatty acid composition of organs from the mud crab, Scylla serrata, over a broad salinity range. Mar Biol Res 10: 460-471.
  • Romano N, Zeng C (2012). Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334: 12-23.
  • Sánchez-Paz A, García-Carreño F, Muhlia-Almazan A, Peregrino- Uriarte A, Hernández-López J, Yepiz-Plascencia G (2006).
  • Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Molec Biol 36: 241-249.
  • Schleich CE, Goldemberg AL, López Mañanes AA (2001). Salinity dependent Na + /K + -ATPase activity in gills of euryhaline crab Chasmagnathus granulatus . Gene Physiol Biophys 20: 255-256.
  • Singh K, Kayastha AM (2014). α-Amylase from wheat ( Triticum aestivum ) seeds: its purification, biochemical attributes and active site studies. Food Chem 162: 1-9.
  • Spivak E (1997). Cangrejos estuariales del Atlántico sudoccidental (25°-41°S) (Crustacea: Decapoda: Brachyura). Invest Mar Valparaíso 25: 105-112 (in Spanish).
  • Spivak E (2010). The crab Neohelice (= Chasmagnathus) granulata : an emergent animal model from emergent countries. Helgol Mar Res 64: 149-154.
  • Tiwari SP, Srivastava R, Singh CS, Shukla K, Singh RK, Singh P, Singh R, Singh NL, Sharma R (2015). Amylases: an overview with special reference to alpha amylase. J Global Biosc 4: 1886-1901.
  • Tsai A, Cowan MR, Johnson DG, Brannon PM (1994). Regulation of pancreatic amylase and lipase gene expression by diet and insulin in diabetic rats. J Physiol Gastrointest Liver Physiol 267: G575-G583.
  • Valle SC, Eichler P, Maciel JE, Machado G, Kucharski LC, da Silva RSM (2009). Seasonal variation in glucose and neutral amino acid uptake in the estuarine crab Neohelice granulata . Comp Biochem Physiol A 153: 252-257.
  • Van Wormhoudt A, Bourreau G, Le Moullac G (1995). Amylase polymorphism in Crustacea Decapoda: electrophoretic and immunological studies. Biochem Syst Ecol 23: 139-149.
  • Van Wormhoudt A, Sellos D (2003). Cloning and sequencing analysis of three amylase cDNAs in the shrimp Penaeus vannamei (Crustacea decapoda): evolutionary aspects. J Mol Evol 42: 543-551.
  • Verri T, Mandal A, Zilli L, Bossa D, Mandal PK, Ingrosso L, Zonno V, Viella S, Aheam GA, Storelli C (2001). D-Glucose transport in decapod crustacean hepatopancreas. Comp Biochem Physiol A 130: 585-606.
  • Wang W, Wu X, Liu Z, Zheng H, Cheng Y (2014). Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus : gene discovery in the comparative transcriptome of different hepatopancreas stages. PLoS One 9: e84921.
  • Wu H, Xuan R, Li Y, Zhang X, Jing W, Wang L (2014). Biochemical, histological and ultrastructural alterations of the alimentary system in the freshwater crab Sinopotamon henanense subchronically exposed to cadmium. Ecotoxicology 23: 65-75.
  • Xie F, Quan S, Liu D, Ma H, Li F, Zhou F, Chen G (2014). Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2 process. Biochemistry 49: 47-53.
  • Zeng H, Ye H, Li S, Wang G, Huang J (2010). Hepatopancreas cell cultures from mud crab, Scylla paramamosain . In Vitro Cell Dev Biol Anim 46: 431-437.