The effect of paddy straw and concentrate containing green tea dust on performance and nutrient digestibility in feedlot lambs

The utilization of low-input paddy straw hay PSH for fattening lambs should be incorporated with a high-quality concentrate HQC in which green tea dust GTD rich in tannins can be added as a natural feed additive. Completely randomized design was used to compare 5 doses of GTD inclusions dry matter, DM basis at 0% GTD-0 , 0.5% GTD-0.5 , 1% GTD-1 , 1.5% GTD-1.5 , and 2% GTD-2 in an HQC as the main diet of PSH-fed fattening lambs on average daily gain ADG, g/head/day , dry matter intake DMI, g/head/day , and nutrient digestibility % using 6 replicates. The results showed that GTD-1.5 resulted in higher P 0.05 in nutrient digestibility of the lambs for all GTD treatments, but GTD-1.5 resulted in better nutrient digestibility. Proper GTD inclusion in an HQC and PSHbased diet can therefore increase the performance of fattening lambs without any harmful effects on feed consumption and nutrient digestibility. GTD inclusion in an HQC as the main diet of feedlot lambs is recommended at 1.5%.

___

  • 1. Budisatria ME, Udo HMJ, Eilers HAM, Baliarti E, van der Zijpp AJ. Preferences for sheep and goats in Indonesia. Small Ruminant Research 2010; 88 (1): 16-22. doi: 10.1016/j. smallrumres.2009.11.002
  • 2. Gurbuz Y, Alarslan OF. The effects of different supplemented pellet binders in lamb’s diets on fattening performance and carcass characteristics. Journal of Animal Production 2017; 58 (2): 15-23. doi:10.29185/hayuretim.330840
  • 3. Eun JS, Beauchemin KA, Hong SH, Bauer MW. Exogenous enzymes added to untreated or ammoniated rice straw: effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology 2006; 131 (1-2): 87-102. doi: 10.1016/j.anifeedsci.2006.01.026
  • 4. Van Soest PJ. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology 2006; 130 (3-4): 137-171. doi: 10.1016/j.anifeedsci.2006.01.023
  • 5. Khan MMH, Chaudhry AS. Chemical composition of selected forages and spices and the effect of these spices on in vitro rumen degradability of some forages. Asian-Australasian Journal of Animal Science 2010; 23 (7): 889-900. doi: 10.5713/ ajas.2010.90442
  • 6. Meyer NF, Bryant TC. Diagnosis and management of rumen acidosis and bloat in Feedlots. Veterinary Clinics of North America: Food Animal Practice 2017; 33 (3): 481-498. doi: 10.1016/j.cvfa.2017.06.005
  • 7. Supratman H, Ramdani D, Kuswaryan S, Budinuryanto DC, Joni IM. Application of probiotics and different sizes of sodium bicarbonate powders for feedlot sheep fattening. In: Proceedings of the 1st International Conference and Exhibition on Powder Technology; Sumedang, Indonesia; 2018. doi: 10.1063/1.5021238
  • 8. Bartle SJ, Preston RL, Miller MF. Dietary energy source and density: effects of roughage source, roughage equivalent, tallow level, and steer type on feedlot performance and carcass characteristics. Journal of Animal Science 1994; 72 (8): 1943- 1953. doi: 10.2527/1994.7281943x
  • 9. Ramdani D, Chaudhry AS, Hernaman I, Seal CJ. Comparing tea leaf products and other forages for in-vitro degradability, fermentation, and methane for their potential use as natural additives for ruminants. In: Proceedings of the 2nd International Conference on Sustainable Agriculture and Food Security: A Comprehensive Approach; Sumedang, Indonesia; 2017. pp. 63- 71. doi: 10.18502/kls.v2i6.1020
  • 10. Ramdani D, Chaudhry AS, Seal CJ. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. Journal of Agricultural and Food Chemistry 2013; 61 (20): 4961-4967. doi: 10.1021/jf4002439
  • 11. Ramdani D, Chaudhry AS, Seal CJ. Alkaloid and polyphenol analyses by HPLC in green and black teas powders and their potential as additives in ruminant diets. In: Proceedings of the 1st International Conference and Exhibition on Powder Technology; Sumedang, Indonesia; 2018. doi: 10.1063/1.5021201
  • 12. Paul SS, Mandal AB, Mandal GP, Kannan, Pathak N. Deriving nutrient requirements of growing Indian sheep under tropical condition using performance and intake data emanated from feeding trials conducted in different research institutes. Small Ruminant Research 2003; 50 (1-2): 97-107. doi: 10.1016/ S0921-4488(03)00119-6
  • 13. AOAC. Animal Feed. In: Horwitz W, Latimer GW, Thiex NW (editors). Official Methods of Analysis of AOAC International. Gaithersburg, Maryland, USA: AOAC International; 2005. 14. Makkar HPS. Quantification of tannins in tree and shrub foliage: a laboratory manual. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2003.
  • 15. Hartadi H, Reksohadiprodjo S, Lebdosukojo S, Tillman AD. Tables of feed composition for Indonesia. Logan, Utah, USA: International Feedstuffs Institute, Utah Agricultural Experiment Station, Utah State University; 1980.
  • 16. Nasehi M, Torbatinejad NM, Rezaie M, Ghoorchi T. Effects of partial substitution of alfalfa hay with green tea waste on growth performance and in vitro methane emission of fattailed lambs. Small Ruminant Research 2018; 168: 52-59. doi: 10.1016/j.smallrumres.2018.09.006
  • 17. Po E, Xu Z, Celi P. The effect of Yerba Mate (Ilex paraguarensis) supplementation on the productive performance of Dorper ewes and their progeny. Asian-Australasian Journal of Animal Science 2012; 25 (7): 945-949. doi: 10.5713/ajas.2012.12031
  • 18. Méndez-Ortiz FA, Sandoval-Castro CA, Ventura-Cordero J, Sarmiento-Franco LA, Torres-Acosta JFJ. Condensed tannin intake and sheep performance: A meta-analysis on voluntary intake and live weight change. Animal Feed Science and Technology 2018; 245: 67-76. doi: 10.1016/j. anifeedsci.2018.09.001
  • 19. Huang XD, Liang JB, Tan HY, Yahya R, Khamseekhiew B et al. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Animal Feed Science and Technology 2010; 159 (3-4): 81-87. doi: 10.1016/j.anifeedsci.2010.05.008
  • 20. Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ et al. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 2012; 176 (1): 78-93. doi: 10.1016/j. anifeedsci.2012.07.010
  • 21. Kondo M, Hirano Y, Kita K, Jayanegara A, Yokota HO. Fermentation characteristics, tannin contents and in vitro ruminal degradation of green tea and black tea by-products ensiled at different temperatures. Asian-Australasian Journal of Animal Science 2014; 27 (7): 937-945. doi: 10.5713/ ajas.2013.13387
  • 22. Ishihara N, Chu DC, Akachi S, Juneja LR. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livestock Production Science 2001; 68 (2-3): 217-229. doi: 10.1016/S0301-6226(00)00233-5
  • 23. Galicia-Aguilar HH, Rodríguez-González LA, Capetillo-Leal CM, Cámara-Sarmiento R, Aguilar-Caballero AJ et al. Effects of Havardia albicans supplementation on feed consumption and dry matter digestibility of sheep and the biology of Haemonchus contortus. Animal Feed Science and Technology 2012; 176 (1-4): 178-184. doi: 10.1016/j.anifeedsci.2012.07.021
  • 24. Azaizeh H, Halahleh F, Abbas N, Markovics A, Muklada H et al. Polyphenols from Pistacia lentiscus and Phillyrea latifolia impair the exsheathment of gastro-intestinal nematode larvae. Veterinary Parasitology 2013; 191 (1-2): 44-50. doi: 10.1016/j. vetpar.2012.08.016
  • 25. Grainger C, Clark T, Auldist MJ, Beauchemin KA, McGinn SM et al. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science 2009; 89 (2): 241-251. doi: 10.4141/CJAS08110
  • 26. Puchala R, Animut G, Patra AK, Detweiler GD, Wells JE et al. Methane emissions by goats consuming Sericea lespedeza at different feeding frequencies. Animal Feed Science and Technology 2012; 175 (1-2): 76-84. doi: 10.1016/j. anifeedsci.2012.03.015
  • 27. Jayanegara A, Leiber F, Kreuzer M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition 2012; 96 (3): 365-375. doi: 10.1111/j.1439-0396.2011.01172.x
  • 28. Boadi D, Benchaar C, Chiquette J, Massé D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science 2004; 84 (3): 319-335. doi: 10.4141/A03-109
  • 29. Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM et al. Effects of fatty acids on meat quality: a review. Meat Science 2003; 66 (1): 21-32. doi: 10.1016/S0309-1740(03)00022-6
  • 30. Vasta V, Mere M, Serra A, Scerra M, Luciano G et al. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. Journal of Animal Science 2009; 87 (8): 2674-2684. doi: 10.2527/jas.2008-1761
  • 31. Wood TA, Ramos-Morales E, McKain N, Shen X, Atasoglu C et al. Chrysanthemum coronarium as a modulator of fatty acid biohydrogenation in the rumen. Animal Feed Science and Technology 2010; 161 (1-2): 28-37. doi: 10.1016/j. anifeedsci.2010.07.016