Growth performance, survival rate, flesh, and proximate composition of sex-grouped triploid and diploid Nile tilapia (Oreochromis niloticus)

Growth performance, survival rate, flesh, and proximate composition of sex-grouped triploid and diploid Nile tilapia (Oreochromis niloticus)

This study aimed to compare the growth performance, survival rate, flesh, and proximate composition of sex-grouped triploidand diploid Nile tilapia. The triploid population was obtained through heat shock at 41 ºC for 4 min, 4 min after fertilization. Beforesexing, 50 fish were reared in aquaria at a density of 1 fish L–1 for 2 months. After sexing, both triploid and diploid fish were groupedinto all-male, all-female, and mixed-sex groups and reared in hapas at a density of 10 fish m–2 for 4 months. Each group was replicatedthree times. The highest body weight, body length, and growth rate were observed in all-male triploids, while the lowest of thoseparameters were obtained in all-female diploids. The highest survival rate was achieved in both all-male and mixed-sex triploids, and itdid not significantly differ from the mixed-sex diploid (P > 0.05). The triploid fish had a higher edible carcass percentage than diploids.Proximate analysis indicated that the crude protein content of triploids was higher than that of diploids, while the crude lipid and ashcontents were lower than those of diploids (P < 0.05). Triploid Nile tilapia had the best growth performances, including flesh quantityand quality, compared to diploids.

___

  • 1. Devlin RH, Biagi CA, Yesaki TY. Growth, viability and genetic characteristics of GH transgenic Coho salmon strains. Aquaculture 2004; 236 (1-4): 607-632. doi: 10.1016/j. aquaculture.2004.02.026
  • 2. Galli L. Genetic Modification in Aquaculture: A Review of Potential Benefits and Risks. Canberra, Australia: Bureau of Rural Sciences; 2002.
  • 3. Jayaprasad PP, Srijaya TC, Jose D, Papini A, Hassan A et al. Identification of diploid and triploid red tilapia by using erythrocyte indices. Caryologia 2011; 64 (4): 485-492. doi: 10.1080/00087114.2011.10589816
  • 4. Lutz CG. Practical Genetics for Aquaculture. Fishing News Books, Oxford, UK: Blackwell Science; 2001.
  • 5. Felip A, Zanuy S, Carrillo M, Piferrer F. Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica 2001; 111 (1-3): 175-195.
  • 6. Melamed P, Gong Z, Fletcher G, Hew CL. The potential impact of modern biotechnology on fish aquaculture. Aquaculture 2002; 204 (3-4): 255-269. doi: 10.1016/S0044-8486(01)00838-9
  • 7. Dunham RA. Aquaculture and Fisheries Biotechnology: Genetic Approaches. Cambridge, UK: CABI Publishing; 2004.
  • 8. Pradeep PJ, Srijaya TC, Bahuleyan A, Papini A. Can sterility through triploidy induction make an impact on tilapia industry? International Journal of Aquatic Science 2012; 3 (2): 89-96.
  • 9. Pechsiri J, Yakupitiyage A. A comparative study of growth and feed utilization efficiency of sex-reversed diploid and triploid Nile tilapia (Oreochromis niloticus L.). Aquaculture Research 2005; 36 (1): 45-51. doi: 10.1111/j.1365-2109.2004.01182.x
  • 10. Mol K, Byamungu N, Cuisset B, Yaron Z, Ofir M et al. Hormonal profile of growing male and female diploids and triploids of the blue tilapia (Oreochromis aureus)reared in intensive culture. Fish Physiology and Biochemistry 1994; 13 (3): 209-218. doi: 10.1007/BF00004359
  • 11. Hussain MG, Rao GPS, Humayun NM, Randall CF, Penman DJ et al. Comparative performance of growth, biochemical composition, and endocrine profiles in diploid and triploid tilapia (Oreochromis niloticus L.). Aquaculture 1995; 138 (1-4): 87-97. doi: 10.1016/0044-8486(95)01079-3
  • 12. Puckhaber B, Hörstgen-Schwark G. Growth and gonadal development of triploid tilapia (Oreochromis niloticus). In: ICLARM Conference Proceedings of the Third International Symposium on Tilapia in Aquaculture; Manila, Philippines; 1996. pp. 377-382.
  • 13. Bhatta S, Iwai T, Miura T, Higuchi M, Maugars G et al. Differences between male and female growth and sexual maturation in tilapia (Oreochromis mossambicus). Kathmandu University Journal of Science, Engineering and Technology 2012; 8 (II): 57-65. doi: 10.3126/kuset.v8i2.7326
  • 14. Pradeep PJ, Srijaya TC, Papini A, Chatterji AK. Effects of triploidy induction on growth and masculinization of red tilapia [Oreochromis mossambicus (Peters, 1852) × Oreochromis niloticus (Linnaeus, 1758)]. Aquaculture 2012; 344-349: 181- 187. doi: 10.1016/j.aquaculture.2012.03.006
  • 15. Fuentes-Silva C, Soto-Zarazúa GM, Torres-Pacheco I, Flores- Rangel A. Male tilapia production techniques: a mini-review. African Journal of Biotechnology 2013; 12 (36): 5496-5502. doi: 10.5897/AJB11.4119
  • 16. Dan NC, Little DC. The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in Northern Vietnam. Aquaculture 2000; 184 (3-4): 221-231. doi: 10.1016/S0044- 8486(99)00329-4
  • 17. Bhasin S, Woodhouse L, Storer TW. Proof of the effect of testosterone on skeletal muscle. Journal of Endocrinology 2001; 170 (1): 27-38. doi: 10.1677/joe.0.1700027
  • 18. Cnaani A, Levavi-Sivan B. Sexual development in fish: practical applications for aquaculture. Sex Development 2009; 3 (2-3): 164-175. doi: 10.1159/000223080
  • 19. Bartley DM, Rana K, Immink AJ. The use of interspecific hybrids in aquaculture and fisheries. Reviews in Fish Biology and Fisheries 2001; 10 (3): 325-337. doi: 10.1023/A:1016691725361
  • 20. Popma TJ, Green BW. Sex Reversal of Tilapia in Earthen Ponds. Aquaculture Production Manual, Research and Development Series No. 35. Auburn, AL, USA: International Center for Aquaculture, Auburn University; 1991.
  • 21. Pandian TJ, Sheela SG. Hormonal induction of sex reversal in fish. Aquaculture 1995; 138 (1-4): 1-22. doi: 10.1016/0044- 8486(95)01075-0
  • 22. Mukti AT. Optimation of 17α-methyltestosterone synthetic hormone dose and immersion duration in larvae on the success of Nile tilapia (Oreochromis sp.) sex reversal. BSc, Brawijaya University, Malang, Indonesia, 1998 (in Indonesian).
  • 23. Romerio MP, Fencrich-Verani CSN, Santo De-Copmus BE, Pasilva AS. Masculinization of Nile tilapia, using different diets and different doses of MT. Revista Brasileira de Zoologia 2000; 29 (3): 654-659. doi: 10.1590/S1516-35982000000300003
  • 24. Mukti AT, Priyambodo B, Rustidja, Widodo MS. Optimization of both 17α-methyltestosterone synthetic hormone dosage and dipping duration of Nile tilapia (Oreochromis sp.) larvae on sex reversal efficacy. BIOSAIN Journal of Life Science 2002; 2 (1): 1-8 (in Indonesian with an abstract in English).
  • 25. Mohamed AH, Traifalgar RFM, Serrano AE Jr, Peralta JP, Pedroso FL. Dietary administration of dehydroepiandrosterone hormone influences the sex differentiation of hybrid red Tilapia (O. niloticus × O. mossambicus) larvae. Journal of Fisheries and Aquatic Science 2012; 7 (6): 447-453. doi: 10.3923/ jfas.2012.447.453
  • 26. Beaven U, Muposhi V. Aspects of a monosex population of (Oreochromis niloticus) fingerling produced using 17-α methyltestosterone hormone. Journal of Aquaculture Research & Development 2012; 3 (3): 132. doi: 10.4172/2155- 9546.1000132
  • 27. Dagne A, Degefu F, Lakew A. Comparative growth performance of monosex and mixed-sex Nile tilapia (Oreochromis niloticus L.) in pond culture system at Sebeta, Ethiopian. International Journal of Aquaculture 2013; 3 (7): 30-34. doi: 10.5376/ ija.2013.03.0007
  • 28. Ezaz MT, Myers JM, Powell SF, McAndrew BJ, Penman DJ. Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia (Oreochromis niloticus L.). Aquaculture 2004; 232 (1-4): 205-214. doi: 10.1016/j.aquaculture.2003.08.001
  • 29. Müller-Belecke A, Hörstgen-Schwark G. A YY-male (Oreochromis niloticus) strain developed from an exceptional mitotic gynogenetic male and growth performance testing of genetically all-male progenies. Aquaculture Research 2007; 38 (7): 773-775. doi: 10.1111/j.1365-2109.2007.01712.x
  • 30. Aliah RS, Sumantadinata K, Maskur, Naim S. GESIT tilapia: Indonesia’s genetic supermales. Global Aquaculture Advocate 2010; 3: 36-37.
  • 31. Turra EM, Oliveira DAA, Teixeira EA, Luz RK, Prado SA et al. Reproduction control in Nile tilapia (Oreochromis niloticus) by sexual and chromosome set manipulation. Revista Brasileira de Reprodução Animal 2010; 34 (1): 21-28.
  • 32. Kligerman AD, Bloom SE. Rapid chromosome preparation from solid tissues of fish. Journal of the Fisheries Research Board of Canada 1977; 34: 266-269. doi:10.1139/f77-039
  • 33. Mukti AT, Carman O, Alimuddin, Muhammad Zairin Jr. A rapid chromosome preparation technique without metaphase arrest for ploidy determination in Nile tilapia (Oreochromis niloticus). Caryologia 2016; 69 (2): 175-180. doi: 10.1080/00087114.2016.1152112
  • 34. Hariati AM. Fish Feed. Nuffic/Unibraw/Luw/Fish Fisheries Project. Malang, Indonesia: Brawijaya University; 1989 (in Indonesian).
  • 35. Buchtova H, Svobodova Z, Kocour M, Velišek J. Evaluation of the dressing percentage of 3-year-old experimental scaly crossbreds of the common carp Cyprinus carpio (Linnaeus, 1758) in relation to sex. Acta Veterinaria Brno 2006; 75 (1): 123-132. doi: 10.2754/avb200675010123
  • 36. AOAC. Official Methods of Analysis. 18th ed. Washington, DC, USA: Association of Official Analytical Chemists; 2005.
  • 37. Tave D. Genetics for Fish Hatchery Managers. Westport, CT, USA: Avi Publishing; 1993.
  • 38. Mukti AT, Rustidja, Sumitro SB, Djati MS. Polyploidization of common carp(Cyprinus carpio L.). BIOSAIN Journal of Life Science 2001; 1 (1): 111-123 (in Indonesian with an abstract in English).
  • 39. Lawson EO, Ishola HA. Effects of cold shock treatment on the survival of fertilized eggs and growth performance of the larvae of African mud catfish Clarias gariepinus (Burchell, 1822). Research Journal of Fisheries and Hydrobiology 2010; 5 (2): 85-91.
  • 40. Qin JG, Fast AW, Ako H. Grow-out performance of diploid and triploid Chinese catfish (Clarias fuscus). Aquaculture 1998; 166 (3-4): 247-258. doi: 10.1016/S0044-8486(98)00287-7
  • 41. Burke HA, Sacobie CFD, Lall SP, Benfey TJ. The effect of triploidy on juvenile Atlantic salmon (Salmo salar) response to varying levels of dietary phosphorus. Aquaculture 2010; 306 (1-4): 295-301. doi: 10.1016/j.aquaculture.2010.05.002
  • 42. Piferrer F, Beaumont A, Falguière JC, Flajšhans M, Haffray P et al. Polyploid fish and shellfish: production, biology, and applications to aquaculture for performance improvement and genetic containment. Aquaculture 2009; 293 (3-4): 125-156. doi: 10.1016/j.aquaculture.2009.04.036
  • 43. Aliah RS, Yamaoka K, Inada Y, Taniguchi N. Effects of triploidy on tissue structure of some organs in ayu. Nippon Suisan Gakkaishi 1990; 56 (4): 569-575. doi: 10.2331/suisan.56.569
  • 44. Kerby JH, Everson JM, Harrell RM, Geiger JG, Starling CC et al. Performance comparisons between diploid and triploid sunshine bass in freshwater ponds. Aquaculture 2002; 211 (1- 4): 91-108. doi: 10.1016/S0044-8486(02)00009-1
  • 45. Cal RM, Vidal S, Gómez C, Álvarez-Blázquez B, Martínez P et al. Growth and gonadal development in diploid and triploid turbot (Scophthalmus maximus). Aquaculture 2006; 251 (1): 99-108. doi:10.1016/j.aquaculture.2005.05.010
  • 46. Felip A, Piferrer F, Zanuy S, Carrillo M. Comparative growth performance of diploid and triploid European sea bass over the first four spawning seasons. Journal of Fish Biology 2001; 58 (1): 76-88. doi: 10.1111/j.1095-8649.2001.tb00500.x
  • 47. Taniguchi N, Kijima A, Tamura T, Takegami K, Yamasaki I. Color, growth, and maturation in ploidy-manipulated fancy carp. Aquaculture 1986; 57 (1-4): 321-328. doi: 10.1016/0044- 8486(86)90210-3
  • 48. Achegbulu CE, Okonji VA, Obi A. Growth and economic performance of diploid and triploid African catfish (Clarias gariepinus) in outdoor concrete tanks. International Journal of Genetics 2013; 3 (1): 1-6. doi: 10.5829/idosi.ijg.2013.3.1.738
  • 49. Chen S, Wang J, Liu SJ, Qin QB, Xiao J et al. Biological characteristics of an improved triploid crucian carp. Science in China Series C: Life Sciences 2009; 52 (8): 733-738. doi: 10.1007/s11427-009-0079-3
  • 50. Tabata YA, Rigolino MG, Tsukamoto RY. Production of allfemale triploid rainbow trout (Oncorhynchus mykiss) [Pisces, Salmonidae]. III. Growth up to first sexual maturation. Boletim do Instituto de Pesca 1999; 25: 67-76.
  • 51. Varadaraj K, Pandian TJ. Production of all-female steriletriploid (Oreochromis mossambicus). Aquaculture 1990; 84 (2): 117-123. doi: 10.1016/0044-8486(90)90342-K
  • 52. Felip A, Carrillo M, Zanuy S. Older triploid fish retain impaired reproductive endocrinology in the European sea bass (Dicentrarchus labrax). Journal of Fish Biology 2009; 75 (10): 2657-2669. doi: 10.1111/j.1095-8649.2009.02458.x
  • 53. Byamungu N, Darras VM, Kühn ER. Growth of heat-shock induced triploids of blue tilapia (Oreochromis aureus) reared in tanks and in ponds in Eastern Congo: feeding regimes and compensatory growth response of triploid females. Aquaculture 2001; 198 (1-2): 109-122. doi: 10.1016/S0044- 8486(00)00605-0
  • 54. Haffray P, Bruant JS, Facqueur JM, Fostier A. Gonad development, growth, survival and quality traits in triploids of the protandrous hermaphrodite gilthead sea bream (Sparus aurata L.). Aquaculture 2005; 247 (1-4): 107-117. doi: 10.1016/j. aquaculture.2005.02.037
  • 55. Werner C, Poontawee K, Mueller-Belecke A, Horstgen- Schwark G, Wicke M. Flesh characteristics of pan-size triploid and diploid rainbow trout (Oncorhynchus mykiss) reared in a commercial fish farm. Archiv Tierzucht 2008; 51 (1): 71-83. doi: 10.5194/aab-51-71-2008
  • 56. Basavaraju Y, Mair GC, Kumar HMM, Kumar SP, Keshavappa GY et al. An evaluation of triploidy as a potential solution to the problem of precocious sexual maturation in common carp (Cyprinus carpio) in Karnataka, India. Aquaculture 2002; 204 (3-4): 407-418. doi: 10.1016/S0044-8486(01)00827-4