Assessment of mitogen-activated protein kinases as therapeutic targets for the treatment of babesiosis and theileriosis

The Piroplasmida order comprises parasitic protozoa including the Theileria and Babesia species that are transmitted by vector ticks and can cause severe diseases in domestic and wild animals. Because of limited therapies and available drug resistance, the discovery of new, effective, and safer drugs for veterinary use is important. Mitogen-activated protein kinases MAPK are a group of serine-threonine protein kinases found in diverse species, including animals and protozoa that conduct vital cellular functions. Therefore, they have been at the centre of drug design studies for many years. Computer-aided structure-based drug design is a fast and effective way in drug discovery efforts to identify candidate compounds. In this study, we conducted comparative sequence analysis of MAPK proteins from the Theileria T. annulata, T. parva., T. orientalis, and T. equi and Babesia species B. bigemina, B. microti, and B. bovis . Three-dimensional protein structures from relevant species T. annulata and B. bovis were modelled and compounds were screened for interaction. Results showed that the inhibitors designed for human use could also be potent against Prioplasmida MAPKs. Furthermore, the structural differences between Prioplasmida and mammalian MAPKs could be a way for researchers to better instigate selective drug design.

___

  • 1. Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitology 2004; 129 (Suppl): S247-269. doi: 10.1017/ s0031182004005190
  • 2. Bishop R, Musoke A, Morzaria S, Gardner M, Nene V. Theileria: intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology 2004; 129 (Suppl): S271-283. doi 10.1017/s0031182003004748
  • 3. Rashid M, Akbar H, Rashid I, Saeed K, Ahmad L et al. Economic significance of tropical theileriosis ona holstein friesian dairy farm in Pakistan. Journal of Parasitology 2018; 104 (3): 310-312. doi: 10.1645/16-179
  • 4. Chatanga E, Mosssad E, Abubaker HA, Alnour SA, Katakura K et al. Evidence of multiple point mutations in Theileria annulata cytochrome b gene incriminated in buparvaquone treatment failure. Acta Tropica 2019; 191: 128-132. doi: 10.1016/j.actatropica.2018.12.041
  • 5. Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA et al. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? International Journal for Parasitology 2019; 49 (2): 183-197. doi:10.1016/j. ijpara.2018.11.002
  • 6. Mhadhbi M, Naouach A, Boumiza A, Chaabani MF, BenAbderazzak S et al. In vivo evidence for the resistance of Theileria annulata to buparvaquone. Veterinary Parasitology 2010; 169: 241-247. doi: 10.1016/j. vetpar.2010.01.013
  • 7. Sharifiyazdi H, Namazi F, Oryan A, Shahriari R, Razavi M. Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure. Veterinary Parasitology 2012; 187: 431-435. doi: 10.1016/j. vetpar.2012.01.016
  • 8. Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ. Current advances in detection and treatment of babesiosis. Current Medicinal Chemistry 2012; 19 (10): 1504- 1518. doi: 10.2174/092986712799828355
  • 9. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta 2011; 1813 (9): 1619-1633. doi: 10.1016/j.bbamcr.2010.12.012
  • 10. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298 (5600): 1912-1934. doi: 10.1126/science.1075762
  • 11. Talevich E, Mirza A, Kannan N. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evolutionary Biology 2011; 11: 321. doi: 10.1186/1471-2148- 11-321
  • 12. Talevich E, Tobin AB, Kannan N, Doerig C. An evolutionary perspective on the kinome of malaria parasites. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 2012; 367 (1602): 2607-2618. doi: 10.1098/ rstb.2012.0014
  • 13. Lacey MR, Brumlik MJ, Yenni RE, Burow ME, Curiel TJ. Toxoplasma gondii expresses two mitogen-activated protein kinase genes that represent distinct protozoan subfamilies. Journal of Molecular Evolution 2007; 64 (1): 4-14. doi:10.1007/ s00239-005-0197-x
  • 14. Argüello-Garciá R, Bazán-Tejeda ML, Ortega-Pierres G. Encystation commitment in Giardia duodenals: a long and winding road. Parasite 2009; 16 (4): 247-258. doi: 10.1051/ parasite/2009164247
  • 15. Dorin-Semblat D, Quashie N, Halbert J, Sicard A, Doerig C et al. Functional characterization of both MAP kinases of the human malaria parasite Plasmodium falciparum by reverse genetics. Molecular Microbiology 2007; 65 (5): 1170-1180. doi: 10.1111/j.1365-2958.2007.05859.x
  • 16. Rangarajan R, Bei AK, Jethwaney D, Maldonado P, Dorin, D et al. A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei. EMBO Reports 2005; 6 (5): 464-469. doi: 10.1038/sj.embor.7400404
  • 17. Wiese M. Leishmania MAP kinases-familiar proteins in an unusual context. International Journal for Parasitology 2007; 37 (10): 1053-62. doi: 10.1016/j.ijpara.2007.04.008
  • 18. Erdmann M, Scholz A, Melzer IM, Schmetz C, Wiese M. Interacting protein kinases involved in the regulation of flagellar length. Molecular Biology of the Cell 2006; 17 (4): 2035-2045. doi: 10.1091/mbc.E05-10-0976
  • 19. Bao Y, Weiss LM, Ma YF, Lisanti MP, Tanowitz HB et al. Molecular cloning and characterization of mitogen-activated protein kinase 2 in Trypanosoma cruzi. Cell Cycle 2010; 9 (14): 2888-2896. doi: 10.4161/cc.9.14.12372
  • 20. Ashutosh, Garg M, Sundar S, Duncan R, Nakhasi HL et al. Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance. Antimicrobial Agents and Chemotherapy 2012; 56 (1): 518-525. doi: 10.1128/AAC.00736-11
  • 21. Dorin D, Alano P, Boccaccio I, Cicéron L, Doerig C et al. An atypical mitogen-activated protein kinase (MAPK) homologue expressed in gametocytes of the human malaria parasite Plasmodium falciparum. Identification of a MAPK signature. Journal of Biological Chemistry 1999; 274 (42): 29912-29920. doi: 10.1074/jbc.274.42.29912
  • 22. Brumlik MJ, Pandeswara S, Ludwig SM, Murthy K, Curiel TJ. Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens. Journal of Signal Transduction 2011; 2011: 971968. doi: 10.1155/2011/971968
  • 23. Huang H, Ma YF, BaoY, Lee H, Lisanti MP et al. Molecular cloning and characterization of mitogen-activated protein kinase 2 in Toxoplasma gondii. Cell Cycle 2011; 10 (20): 3519- 3526. doi:10.4161/cc.10.20.17791
  • 24. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/ SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 2017; 45 (D1): D200-D203. doi: 10.1093/nar/gkw1129
  • 25. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani et al. The Pfam protein families database in 2019. Nucleic Acids Research 2019; 47 (D1): D427-D432. doi: 10.1093/nar/gky995
  • 26. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 2000; 302 (1): 205-217. doi: 10.1006/jmbi.2000.4042
  • 27. Robert X, Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 2014; 42 (W1): W320-W324. doi: 10.1093/nar/ gku316
  • 28. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBLEBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 2019; 47 (W1): W636-W641. doi: 10.1093/nar/ gkz268
  • 29. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 2016; 33: 1870-1874. doi: 10.1093/molbev/msw054
  • 30. Timothy LB, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology; Menlo Park, California, USA; 1994. pp. 28- 36.
  • 31. Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research 2007; 35: W460-W464. doi: 10.1093/nar/gkm363
  • 32. Webb B. Sali A. Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics 2016; 54: 5.6.1-5.6.37. doi: 10.1002/cpbi.3
  • 33. Pettersen EF, Goddard TD, Huang GS, Couch DM, Greenblatt EC et al. UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004; 25: 1605-1612. doi: 10.1002/jcc.20084
  • 34. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science 1993; 2 (9): 1511-1519. doi: 10.1002/pro.5560020916
  • 35. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 2007; 35: W407-W410. doi: 10.1093/nar/gkm290
  • 36. Wallner B, Elofsson A. Can correct protein models be identified? Protein Science 2003; 12 (5): 1073-1086. doi: 10.1110/ps.0236803
  • 37. Lovell SC, Davis IW, Arendall WB, de Baker PI. Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 2003; 50 (3): 437-450. doi: 10.1002/prot.10286
  • 38. Volkamer A, Kuhn D, Grombacher D, Rippmann F, Rarey M. Combining global and local measures for structurebased druggability predictions. Journal of Chemical Information and Modeling 2012; 52: 360-372. doi: 10.1021/ ci200454v
  • 39. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005; 16 (16): 1781-1802. doi: 10.1002/jcc.20289
  • 40. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics 1996; 14 (1); 33-38. doi: 10.1016/0263-7855(96)00018-5.
  • 41. Beenstock J. Ben-Yehuda S, Melamed D, Admon A, Livnah O et al. The p38 Mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the -G Helix and MAPK Insert. The Journal of Biological Chemistry 2014; 289 (34): 23546-23556. doi: 10.1074/jbc.M114.578237.
  • 42. Yang L, Sun X, Ye Y, Lu Y, Zuo J et al. p38α mitogenactivated protein kinase is a druggable target in pancreatic adenocarcinoma. Frontiers in Oncology 2019; 9: 1294. doi: 10.3389/fonc.2019.01294.
  • 43. Nguyen T, Ruan Z, Oruganty K, Kannan N. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. PLoS One 2015; 10 (3): e0119636. doi: 10.1371/journal.pone.0119636.
  • 44. Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. Journal of Biological Chemistry 2005; 280 (4): 2659-2667. doi: 10.1074/jbc. M412599200.
  • 45. Millan DS, Bunnage ME, Burrows JL, Butcher KJ, Dodd PG et al. Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. Journal of Medicinal Chemistry 2011; 54 (22): 7797-7814. doi: 10.1021/jm200677b.
  • 46. Heathcote DA, Patel H, Kroll SH, Hazel P, Periyasamy M et al. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclindependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. Journal of Medicinal Chemistry 2010; 53 (24): 8508-8522. doi: 10.1021/jm100732t.
  • 47. Brumlik MJ, Nkhoma S, Kious MJ, Thompson GR 3rd, Patterson TF et al. Human p38 mitogenactivated protein kinase inhibitor drugs inhibit Plasmodim falciparum replication. Experimental Parasitology 2011; 128 (2): 170-175. doi: 10.1016/j.exppara.2011.02.016
  • 48. Bussière FI, Brossier F, Le Vern Y, Niepceron A, Silvestre A et al. Reduced parasite motility and micronemal protein secretion by a p38 MAPK inhibitor leads to a severe impairment of cell invasion by the apicomplexan parasite Eimeria tenella. PloS One 2015; 10 (2): e0116509. doi: 10.1371/journal.pone.0116509.
  • 49. Kaur P, Garg M, Hombach-Barrigah A, Clos J, Goyal N. MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Scientific Reports 2017; 7 (1): 10202. doi: 10.1038/s41598-017-09725-w.
  • 50. Wei S, Daniel BJ, Brumlik MJ, Burow ME, Zou W et al. Drugs designed to inhibit human p38 mitogen-activated protein kinase activation treat Toxoplasma gondii and Encephalitozoon cuniculi infection. Antimicrobial Agents and Chemotherapy 2007; 51 (12): 4324-4328. doi: 10.1128/ AAC.00680-07.
  • 51. Cohen, P. Protein kinases-the major drug targets of the twentyfirst century? Nature Reviews Drug Discovery 2002; 1: 309- 315.
  • 52. Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacological Research 2019; 144: 19-50. doi: 10.1016/j.phrs.2019.03.006.