Across-breed genomic prediction for body weight in Siberian cattle populations

Across-breed genomic prediction for body weight in Siberian cattle populations

Body weight (BW) is an important heritable phenotype and related to other functional and production traits in cattle. The pastdecade has seen an increase in emphasis on genome wide association studies (GWAS) for detecting single nucleotide polymorphisms(SNPs) that are associated with quantitative phenotypes. Prediction of phenotypes using across-breed GWAS information [genomicprediction (GP)] is an also important research area but received less attention from the community. Understanding the link betweenmajor genes and common ancestors within and between breeds will contribute to a deeper understanding of GP across breeds. Theaims of the present study were two-fold: 1) to examine genetic structure and to detect associated SNPs for BW using various single andmultiple locus genomic models and 2) genomic prediction of BW using Siberian cattle populations based on across-breed genomicinformation. The most obvious finding to emerge from this study was the increase in the across-GP accuracy when gene segregation inboth related populations was found. These findings have significant implications for the understanding of the way in which commonancestors and/or the presence of quantitative trait loci might affect the accuracy of the GP results.

___

  • 1 Karacaören B, Jaffrézic F, Kadarmideen HN. Genetic parameters for functional traits in dairy cattle from daily random regression models. Journal of Dairy Science 2016; 89 (2): 791-798. doi: 10.3168/jds.S0022-0302(06)72141-5
  • 2. Yin T, König S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genetics Selection Evolution 2019; 51: doi: 10.1186/ s12711-018-0444-4
  • 3. Koenen EPC, Veerkamp RF. Genetic covariance functions for live weight, condition score, and dry-matter intake measured at different lactation stages of Holstein Friesian heifers. Livestock Production Science 1998; 57: 67-77. doi: 10.1016/ S0301-6226(98)00159-6
  • 4. Veerkamp RF. Selection for economic efficiency of dairy cattle using information on live weight and feed intake: a review. Journal of Dairy Science 1998; 81 (4): 1109-1119. doi: 10.3168/jds.S0022-0302(98)75673-5
  • 5. Veerkamp RF, Oldenbroek JK, Van Der Gaast HJ, Van Der Werf JHJ. Genetic correlation between days until start of luteal activity and milk yield, energy balance, and live weights. Journal of Dairy Science, 2000; 83: 577-583 doi: 10.3168/jds. S0022-0302(00)74917-4
  • 6. Yi H, Breheny P, Imam N, Liu Y, Hoeschele I. Penalized multimarker vs. single-marker regression methods for genomewide association studies of quantitative traits. Genetics 2015; 199 (1): 205-222. doi: 10.1534/genetics.114.167817
  • 7. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al. Finding the missing heritability of complex diseases. Nature 2009; 461 (7265): 747-753. doi: 10.1038/nature08494
  • 8. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genetics 2011; 43 (6): 519-25. doi: 10.1038/ng.823
  • 9. Tam V, Patel N, Turcotte M, Bossé Y, Paré G et al. Benefits and limitations of genome-wide association studies. Nature Reviews Genetics 2019; 20 (8): 467-484. doi: 10.1038/s41576- 019-0127-1
  • 10. Campos G, Gianola D, Allison DB. Predicting genetic predisposition in human: the promise of whole-genome markers. Nature Reviews Genetics 2010; 11: 880-886. doi: 10.1038/nrg2898
  • 11. Lello L, Avery SG, Tellier L, Vazquez AI, de los Campos G, Hsu, SD. Accurate genomic prediction of human height. Genetics 2018; 210 (2): 477-497. doi.: 10.1534/genetics.118.301267
  • 12. Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ, UCLEB Consortium. Reevaluation of SNP heritability in complex human traits. Nature Genetics 2017; 49 (7): 986-992. doi: 10.1038/ng.3865
  • 13. De Roos AP, Hayes BJ, Goddard ME. Reliability of genomic predictions across multiple populations. Genetics 2009; 183 (4): 1545-1553. doi: 10.1534/genetics.109.104935
  • 14. Ober U, Ayroles JF, Stone EA, Richards S, Zhu D et al. Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genetics 2012; 8 (5): e1002685. doi: 10.1371/journal.pgen.1002685
  • 15. Daetwyler HD, Calus MP, Pong-Wong R, de los Campos G, Hickey JM. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 2013; 193 (2): 347-365. doi :10.1534/ genetics.112.147983
  • 16. Iheshiulor OO, Woolliams JA, Yu X, Wellmann R, Meuwissen TH. Within-and across-breed genomic prediction using whole-genome sequence and single nucleotide polymorphism panels. Genetics Selection Evolution 2016; 48 (1): 15. doi: 10.1186/s12711-016-0193-1
  • 17. Raymond B, Bouwman AC, Wientjes YC, Schrooten C, Houwing-Duistermaat J et al. Genomic prediction for numerically small breeds, using models with pre-selected and differentially weighted markers. Genetics Selection Evolution 2018; 50 (1): 49. doi: org/10.1186/s12711-018-0419-5
  • 18. Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density Ö Msingle nucleotide polymorphism panels. Journal of Dairy Science 2012; 95 (7): 4114-4129. doi.:10.3168/jds.2011-5019
  • 19. Calus MP, Huang H, Vereijken A, Visscher J, Ten Napel J, Windig JJ. Genomic prediction based on data from three layer lines: a comparison between linear methods. Genetics Selection Evolution 2014; 46 (1): 57. doi: 10.1186/s12711-014- 0057-5
  • 20. Hoze C, Fritz S, Phocas F, Boichard D, Ducrocq V, Croiseau P. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. Journal of Dairy Science 2014; 97 (6): 3918-3929. doi: 10.3168/jds.2013- 7761
  • 21. Igoshin AV, Yudin NS, Belonogova NM, Larkin DM. Genome‐ wide association study for body weight in cattle populations from Siberia. Animal Genetics 2019; 50(3): 250-253. doi: 10.1111/age.12786.
  • 22. Yurchenko A, Yudin N, Aitnazarov R, Plyusnina A, Brukhin V, et al.Genome‐wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity 2018; 120 (2): 125-137. doi: 10.1038/s41437-017-0024-3
  • 23. Aulchenko YS, De Koning DJ, Haley C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 2007; 177: 577-585. doi.: 0.1534/genetics.107.075614
  • 24. Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS. Rapid variance components-based method for whole-genome association analysis. Nature Genetics 2012; 44:1166–1170. doi: 10.1038/ng.2410
  • 25. R Development Core Team. R: A language and environmental for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: 2013.
  • 26. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 2006; 38: 904-909. doi: 10.1038 / ng1847
  • 27. Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS. Truncated product method for combining P‐values. Genetic Epidemiology 2002; 22, 170-185. doi: 10.1002/gepi.0042
  • 28. Zhou X, Carbonetto P, Stephens M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genetics 2013; 9 (2): e1003264. doi: 10.1371/journal.pgen.1003264
  • 29. Moser G, Lee SH, Hayes BJ., Goddard ME, Wray NR, Visscher PM. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genetics 2015; 11 (4): e1004969. doi: 10.1371/ journal.pgen.1004969
  • 30. Habier D, Fernando RL, Garrick DJ, Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 2013; 194: 597-607. doi: 10.1534/genetics.113.152207
  • 31. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics 2014; 15 (5): 335-346. doi: 10.1038/nrg3706
  • 32. Hu X, Zhang W, Zhang S, Ma S, Li Q. Group-combined P-values with applications to genetic association studies. Bioinformatics 2016; 32(18): 2737-2743. doi: 10.1093/bioinformatics/btw314
  • 33. Seabury C M, Oldeschulte DL, Saatchi M, Beever JE, Decker JE et al. Genome-wide association study for feed efficiency and growth traits in US beef cattle. BMC Genomics 2017; 18 (1): 386. doi: 10.1186/s12864-017-3754-y
  • 34. Kachman SD, Spangler ML, Bennett GL, Hanford KJ, Kuehn LA et al. Comparison of molecular breeding values based on within-and across-breed training in beef cattle. Genetics Selection Evolution 2013; 45 (1): 30. doi: 10.1186/1297-9686- 45-30
  • 35. Lee J, Kim JM, Garrick DJ. Increasing the accuracy of genomic prediction in pure-bred Limousin beef cattle by including cross-bred Limousin data and accounting for an F94L variant in MSTN. Animal Genetics 2019; 50 (6): 621-633. doi: 10.1111/ age.12846 [Epub ahead of print].