Half inverse problems for the impulsive singular diffusion operator
Half inverse problems for the impulsive singular diffusion operator
In this paper, we consider the inverse spectral problem for the impulsive
Sturm-Liouville differential pencils on $\left[ 0,\pi\right] $ with the
Robin boundary conditions and the jump conditions at the point $\dfrac{\pi}%
{2}$. We prove that two potentials functious on the whole interval and the
parameters in the boundary and jump conditions can be determined from a set of
eigenvalues for two cases: (i) The potentials is given on $\left(
0,\dfrac{\pi}{4}\left( \alpha+\beta \right) \right) .$ (ii) The potentials is
given on $\left( \alpha+\beta, \dfrac{\alpha+\beta}{2} \right) $, where
$01$ respectively. Finally, was given interior inverse problem for same boundary problem.
___
- Referans1. Amirov RK. On Sturm-Liouville operators with discontiniuity conditions inside an interval. Journal of Mathematical Analysis and Aplications. 317(1), 2006, 163-176.
- Referans2. Amirov RK, Nabiev AA. Inverse problems for the
quadratic pencil of the Sturm-Liouville equations with impulse, Abstract Applied
Analysis. Art.ID 361989, 2013, 10
- Referans3. Freiling G, Yurko VA. Inverse spectral problems for
singular non-selfadjoint differential operators with discontinuities in an
interior point, Inverse Probl.18(3), 2002, 757-773.
- Referans4. Levin BY. Lectures on Entire Functions, Transl. Math.
Monographs. Amer. Math. Soc. Providence. 1996.
- Referans5. Bellman R. Cooke KL. Differential-Difference Equations.
Academic Press. New-York. 1963.
- Referans6. Zhang R, Xu XC, Yang CF, Bondarenko NP.
Determination of the impulsive Sturm-Liouville operator from a set
of eigenvalues. J.Inverse and III-Posed Probl. 2019.
- Referans7. Nabiev AA, Amirov RK. Integral
representations for the solutions of the generalized Schroedinger equation in
a finite interval, Advances in Pure Mathematics. 5(13), 2015, 777-795.
- Referans8. Meshonav VP, Feldstein AI. Automatic Design of Directional Couplers. Moscow. Russian. 1980.
- Referans9. Litvinenko ON, Soshnikov VI. The Theory of
Heterogeneous Lines and Their Applications in Radio Engineering.
Moscow. Russia. 1964.
- Referans10. Krueger RJ. Inverse problems for nonabsorbing media
with discontinuous material properties. Journal of Mathematical Physics. 23(3), 1982, 396-404.
- Referans11. Shepelsky DG. The inverse problem of reconstruction of
the medium's conductivity in a class of discontinuous and increasing
functions. Advances in Soviet Mathematics. 19, 1997, 303-309.
- Referans12. Lapwood FR, Usami T. Free Oscillation of the Earth.
Cambridge University Press. Cambridge. 1981.
- Referans13. Borg G. Eine Umkehrung der Sturm-Liouvilleschen
Eigenwertaufgable. Acta Mathamatica. 78, 1946, 1-96.
- Referans14. McLaughlin JR. Analytical methods for recovering
coefficients in differential equations from spectral data. SIAM. 28(1), 1986, 53-72.
- Referans15. Hald OH. Discontinuous inverse eigenvalue problems,
Communications on Pure and Applied Mathematics. 37(5), 1984, 539-577.
- Referans16. Yurko VA. On higher-order differantial operators with a
singular point. Inverse Problems. 9(4), 1993, 495-502.
- Referans17. Rundell W, Sacks PE. Reconstruction techniques for
classical inverse Sturm-Liouville problems. Math. Comp. 58(197), 1992, 161-183.
- Referans18. Rundell W, Sacks PE. Reconstruction of a radially
symmetric potential from two spectral sequences. J. Math. Anal. Appl. 264(2), 2001, 354-381.
- Referans19. Yurko VA. Integral transforms connected with discontinuous
boundary value problems. Integral Transform. Spec. Funct. 10(2), 2000, 141-164.
- Referans20. H. Hochstadt H, Lieberman B. An inverse Sturm-Liouville
problem with mixed given data. SIAM J. Appl. Math. 34, 1978.
- Referans21. Hryniv RO, Mykytyuk YV. Half-inverse spectral
problems for Sturm-Liouville operators with singular potentials. Inverse
Problems. 20(5), 2004, 1423-1444.
- Referans22. Martinyuk O, Pivovarchik V. On the Hochstadt-Lieberman
theorem. Inverse Problems 26(3), 2010, Article ID 035011.
- Referans23. Sakhnovich L. Half-inverse problems on the finite interval.
Inverse Problems. 17(3), 2001, 527-532.
- Referans24. Ambartsumyan VA. Über eine frage der eigenwerttheorie. Zeitschrift für Physik. 53, 1929, 690-695.
- Referans25. Xu X-C, Yang C-F. Reconstruction of the
Sturm-Liouville operator with discontinuities from a particular set of
eigenvalues. Appl. Math. J. Chinese Univ. Ser. B. 33(2), 2018, 225-233.
- Referans26. Yang C-F. Hochstadt-Lieberman theorem for Dirac operator with
eigenparameter dependent boundary conditions. Nonlinear Anal. 74(7), 2011, 2475-2484.
- Referans27. Koyunbakan H. Inverse problem for a quadratic pencil of
Sturm-Liouville operator, J. Math. Anal. Appl. 378, 2011, 549-554.
- Referans28. Yang C-F, Zettl A. Half inverse problems for quadratic
pencils of Stur-Liouville operators. Taiwanese Journal Of Mathematics. 16(5), 2012, 1829-1846.
- Referans29. Yang C-F, Guo YX. Determination of a differential
pencil from interior spectral data. J. Math. Anal. Appl. 375, 2011, 284-293.
- Referans30. Yang C-F, Yang X-P. An interior inverse problem for
the Sturm-Liouville operator with discontinuous conditions. Appl. Math. Lett.
22(9), 2009, 1315-1319.
- Referans31. Jonas P. On the spectral theory of operators associated with
perturbed Klein-Gordon and wave type equations. J. Oper. Theory. 29, 1993, 207-224.
- Referans32. Keldyshm M. V. On the eigenvalues and eigenfunctions of
some classes of nonselffadjoint equations. Dokl. Akad. Nauk SSSR. 77, 1951, 11-14.
- Referans33. Kostyuchenko AG, Shkalikov AA. Selfadjoint
quadratic operator pencils and elliptic problems. Funkc. Anal. Prilozh. 17, 1983, 38-61.
- Referans34. Marchenko VA. Sturm--Liouville Operators and Their
Applications. Naukova Dumka, Kiev (1977). English transl. Birkh\"{a}user.
Basel. 1986.
- Referans35. Yamamoto M. Inverse eigenvalue problem for a vibration of
a string with viscous drag. J. Math. Anal. Appl. 152, 1990, 20--34.