Objectives: Azithromycin dihydrate is a macrolide antibiotic used for the treatment of several types of bacterial infections. The drug shows loworal bioavailability due to its low solubility. In the present work solid lipid nanoparticles of azithromycin dihydrate were formulated, keeping in viewenhancement of the solubility and rate of dissolution of the drug.Materials and Methods: Azithromycin dihydrate loaded stearic acid nanoparticles were formulated by high shear homogenization using threedifferent surfactants, namely Tween 20, poloxamer 188, and poloxamer 407, at a varied lipid surfactant ratio while keeping the quantities of theactive ingredient constant. Twelve such formulations were prepared. The nanoparticles obtained were evaluated for drug content, % drug loading, %entrapment efficiency, particle size analysis, zeta potential, surface morphology, Fourier transmission infrared spectroscopy, in vitro drug release,and stability.Results: All the formulations showed good entrapment efficiency and high percentage of in vitro release with a particle size suitable for lymphaticabsorption. The nanoparticles formulated with poloxamer 188 showed better characteristics compared to the other surfactants.Conclusion: This study indicates that stearic acid nanoparticles of azithromycin dihydrate prepared by high shear homogenization can besuccessively used for improvement of dissolution and thereby oral bioavailability of the drug.
Amaç: Azitromisin dihidrat, çeşitli bakteriyel enfeksiyon tiplerinin tedavisinde kullanılan bir makrolid antibiyotiktir. Etkin madde düşük çözünürlüğü nedeniyle düşük oral biyoyararlanım gösterir. Bu çalışmada, etken maddenin çözünürlüğünü ve çözünme hızını arttırmaya yönelik olarak azitromisin dihidratın katı lipit nanopartikülleri formüle edilmiştir. Gereç ve Yöntemler: Azitromisin dihidrat yüklü stearik asit nanopartikülleri, etken madde miktarını sabit tutarken, farklı lipit yüzey aktif madde oranında üç farklı yüzey aktif madde, Tween 20, Poloksamer 188 ve Poloksamer 407 kullanılarak yüksek hızlı homojenizasyon yöntemi ile formüle edilmiştir. Bu yöntemle on iki formülasyon hazırlanmıştır. Elde edilen nanopartiküller etken madde içeriği, % etken madde yükleme, % enkapsülasyon etkinliği, partikül boyutu analizi, zeta potansiyeli, yüzey morfolojisi, Fourier Transmisyon kızılötesi spektroskopisi, in vitro etken madde salımı, stabilite çalışması için değerlendirilmiştir. Bulgular: Tüm formülasyonlar, iyi yükleme etkinliği ve lenfatik absorpsiyon için uygun bir partikül büyüklüğü ile yüksek oranda in vitro salım göstermiştir. Poloksamer 188 ile formüle edilen nanopartiküller, diğer sürfaktanlara kıyasla daha iyi özellikler göstermiştir. Sonuç: Bu çalışma, yüksek hızlı homojenizasyon yöntemiyle hazırlanan azitromisin dihidratın stearik asit nanopartiküllerinin, çözünmenin ve dolayısıyla ilacın oral biyoyararlanımının iyileştirilmesi için kullanılabileceğini göstermiştir.
___
1. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161-177.
2. Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles: a review. Sci Revs Chem Commun. 2012;2:80-102.
3. Mehnert W, Mäder K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165-196.
4. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71:349-358.
5. Yadav N, Khatak S, Sara UVS. Solid lipid nanoparticles - A review. Int J Appl Pharm. 2013;5:8-18.
6. Lode H, Borner K, Koeppe P, Schaberg T. Azithromycin--review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996;37:1-8.
7. Timoumi S, Mangin D, Peczalski R, Zagrouba F, Andrieu J. Stability and thermophysical properties of azithromycin dihy drate. Arabian J Chem. 2014;7:189-195.
8. Idkaidek NM, Najib N, Salem I, Jilani J. Physiologically-based IVIVC of azithromycin. Am J Pharmacol Sci. 2014;2:100-102.
9. Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:27-34.
10. Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm. 2011;3:216-220.
11. Padhye SG, Nagarsenker MS. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci. 2013;75:591-598.
12. Sultana N, Arayne MS, Hussain F, Fatima A. Degradation studies of azithromycin and its spectrophotometric determination in pharmaceutical dosage form. Pak J Pharm Sci. 2006;19:98-103.
13. El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25:78-90.
14. Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017;7:47-57.
15. Parvin S, Rafshanjani AS, Kader A. Formulation and evaluation of dexamethasone loaded stearic acid nanoparticles by high shear homogenization method. Please check the abbreviation. 2014;3:331-335.
16. Soma D, Attari Z, Reddy MS, Damodaram A, Koteshwara KBG. Solid lipid nanoparticles of irbesartan: preparation, characterization, optimization and pharmacokinetic studies. Braz J Pharm Sci. 2017;53:e15012.
17. Kommavarapu P, Maruthapillai A, Palanisamy K. Preparation, characterization and evaluation of Elvitegravir loaded solid lipid nano particles for enhanced solubility and dissolution rate. Trop J Pharm Res. 2015;14:1549-1556.
18. Singh S, Kamal SS, Sharma A, Kaur D, Katual MK, Kumar R. Formulation and in-vitro evaluation of solid lipid nanoparticles containing Levosulpiride. The Open Nanomed J. 2017;4:17-29.
19. Shi L, Li Z,Yu L, Jia H, Zheng L. Effects of Surfactants and Lipids on the Preparation of Solid Lipid Nanoparticles Using Double Emulsion Method. J Dispers Sci Technol. 2011;32:254-259.
20. Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, Roberts M. Surfactant effects on lipid-based vesicles properties. J Pharm Sci. 2018;107:1237-1246.
21. Londhe V, Save S. Zaltoprofen loaded solid lipid nanoparticles for topical delivery: Formulation design, in vitro and ex vivo evaluation. MOJ Bioequiv Availab. 2017;4:248-254.