The in vitro cytotoxic, genotoxic, and oxidative damage potentials of the oral artificial sweetener aspartame on cultured human blood cells

The in vitro cytotoxic, genotoxic, and oxidative damage potentials of the oral artificial sweetener aspartame on cultured human blood cells

Background/aim: Aspartame (APM, L-aspartyl-L-phenylalanine methylester) is a low-calorie, nonsaccharide artificial sweetener widelyused in foods and beverages. When metabolized by the body, APM is broken down into aspartic acid, phenylalanine amino acids, and a thirdsubstance, methanol. Since the amino acid phenylalanine serves as a neurotransmitter building block affecting the brain, and methanol isconverted into toxic formaldehyde, APM has deleterious effects on the body and brain. Thus, its safety and, toxicity have been the subjectsof concern ever since it was first discovered. Although many studies have been performed on it, due to the presence of conflicting data in theliterature, there are still numerous question marks concerning APM. Therefore, the safety of aspartame was tested using in vitro methods.Materials and methods: We aimed to evaluate the in vitro cytotoxic effects by using 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and lactate dehydrogenase release tests, genotoxic damage potential by using chromosome aberration (CA) assay, andantioxidant/oxidant activity by using total antioxidant capacity (TAC) and total oxidative stress (TOS) analysis in primary human wholeblood cell cultures.Results: The results of the MTT test showed that APM led to significant decreases in cell viability in a clear concentration-dependentmanner. Moreover, an increase in CA frequency was found in the cells treated with APM. However, APM treatments did not cause anysignificant changes in TAC and TOS levels in whole blood cultures.Conclusion: Overall, the obtained results showed that APM had genotoxicity potential and a concentration-dependent cytotoxic activityin human blood cells.

___

  • 1. Ibrahim O. High intensity sweeteners chemicals structure, properties and applications. Natural Science and Discovery 2015; 1(4): 88-94. doi: 10.20863/nsd.97334
  • 2. Yang Q. Gain weight by “going diet?” Artificial sweeteners and the neurobiology of sugar cravings: Neuroscience 2010. Yale Journal of Biology and Medicine 2010; 83(2): 101-108.
  • 3. Gunby P. FDA approves aspartame as soft-drink sweetener. Journal of the American Medical Association 1983; 250(7): 872-873. doi: 10.1001/jama.1983.03340070004002
  • 4. Belpoggi F, Soffritti M, Padovani M, Degli Esposti D, Lauriola M et al. Results of long-term carcinogenicity bioassay on Sprague-Dawley rats exposed to aspartame administered in feed. Annals of the New York Academy of Sciences 2006; 1076: 559-577. doi: 10.1196/ annals.1371.080
  • 5. Magnuson BA, Burdock GA, Doull J, Kroes RM, Marsh GM et al. Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology 2007; 37(8): 629-727. doi: 10. 1080/10408440701516184
  • 6. Finamor I, Pérez S, Bressan AC, Brenner CE, Rius-Pérez S et al. Chronic aspartame intake causes changes in the transsulphuration pathway, glutathione depletion and liver damage in mice. Redox Biology 2017; 11: 701-707. doi: 10.1016/ j.redox. 2017. 01. 019.
  • 7. Li X, Staszewski L, Xu H, Durick K, Zoller M et al. Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(7): 4692-4696. doi: 10.1073/pnas.072090199
  • 8. Sharma A, Amarnath S, Thulasimani M, Ramaswamy S. Artificial sweeteners as a sugar substitute: Are they really safe? Indian Journal of Pharmacology 2016; 48(3): 237-240. doi: 10.4103/0253-7613.182888
  • 9. Ashok I, Wankhar D, Sheeladevi R, Wankhar W. Longterm effect of aspartame on the liver antioxidant status and histopathology in Wistar albino rats. Biomedicine & Preventive Nutrition 2013; 4(2): 229-305. doi: 10.1016/ j.bionut.2013.10.002
  • 10. Lebda MA, Sadek KM, El-Sayed YS. Aspartame and soft drinkmediated neurotoxicity in rats: implication of oxidative stress, apoptotic signaling pathways, electrolytes and hormonal levels. Metabolic Brain Disease 2017; 32(5): 1639-1647. doi: 10.1007/ s11011-017-0052-y.
  • 11. Abd-Ellah HF, Abou-Zeid NRA, Nasr NM. The possible protective effect of N-acetyl-L-cysteine and folic acid in combination against aspartame-induced cerebral cortex neurotoxicity in adult male rats: a light and transmission electron microscopic study. Ultrastructural Pathology 2018; 42(3): 228-245. doi: 10.1080/ 01913123. 2018.1440270.
  • 12. Saleh AB. Synergistic effect of N-acetylcysteine and folic acid against aspartame- induced nephrotoxicity in rats. International Journal of Advanced Research 2014; 2(5): 363- 373.
  • 13. Soffritti M, Belpoggi F, Degli Esposti D, Lambertini L, Tibaldi E et al. First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environmental Health Perspectives 2006; 114(3): 379-385. doi: 10.1289/ ehp.8711
  • 14. Baydar T, Şahin G. Aspartame: metabolism and toxicity. Türkiye Klinikleri Journal of Medical Sciences 1997; 17: 141-152.
  • 15. Coulombe RA Jr, Sharma RP. Neurobiochemical alterations induced by the artificial sweetener aspartame (NutraSweet). Toxicology and Applied Pharmacology 1986; 83(1): 79-85. doi: 10.1016/0041-008X(86)90324-8
  • 16. Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiological Reviews 2015; 95(2): 603-644. doi: 10.1152/ physrev.00034.2014
  • 17. Guidelines for Canadian Drinking Water Quality: Supporting Documentation. Federal-Provincial-Territorial Committee on Drinking Water: Formaldehyde. May 1997. Accessed date: 01.10.2018
  • 18. European Food Safety Authority. Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources. European Food Safety Authority Journal 2014; 12(2): 3550. doi: 10.2903/ j.efsa.2014.3550
  • 19. Horio Y, Sun Y, Liu C, Saito T, Kurasaki M. Aspartameinduced apoptosis in PC12 cells. Environmental Toxicology and Pharmacology 2014; 37(1): 158-165. doi: 10. 1016/j. etap.2013.11.021
  • 20. Sonnewald U, Müller T, Unsgard G, Petersen SB. Effects of aspartame on 45Ca influx and LDH leakage from nerve cells in culture. Neuroreport 1995; 6(2): 318-320. doi: 10.1097/00001756- 199501000-00023
  • 21. Tsakiris S, Giannoulia- Karantana A, Simintzi I, Schulpis KH. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity. Pharmacological Research 2006; 53(1):1-5. doi: 10.1016/ j.phsr.2005.07.006
  • 22. Liesivuori J, Savolainen H. Methanol and formic acid toxicity: biochemical mechanisms. Basic &Clinical Pharmacology& Toxicology 1991; 69(3): 157-163. doi: 10.1111/j.1600-0773.1991. tb01290.x
  • 23. Prokic MD, Paunovic MG, Matic MM, Djordjevic NZ, Ognjanovic BI et al. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats. Journal of Biosciences 2014; 39(5): 859-866. doi: 10.1007/s12038-014-9487-z
  • 24. Abhilash M, Varghese MV, Sauganth Paul MV, Alex M, Nair RH. Effect of long-term intake of aspartame on serum biochemical parameters and erythrocyte oxidative stress biomarkers in rats. Comparative Clinical Pathology 2015; 24(4): 927-933. doi: 10.1007/s00580-014-2013-8
  • 25. Choudhary AK, Sundareswaran L, Sheeladevi R. Aspartame induced cardiac oxidative stress in Wistar albino rats. Nutrition Clinique et Métabolisme 2016; 30(1): 29-37. doi: 10.1016/j. nupar.2016.01.071
  • 26. Ashok I, Sheeladevi R. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain. Redox Biology 2014; 2: 820- 831. doi: 10.1016/ j.redox.2014.04.011
  • 27. Adaramoye OA, Akanni OO. Effects of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats. Journal of Basic and Clinical Physiology and Pharmacology 2016; 27(1): 29-37. doi: 10.1515/jbcpp-2014-0130
  • 28. Alsuhaibani ES. In vivo cytogenetic studies on aspartame. Comparative and Functional Genomics. Vol 2010. Article ID: 605921. doi: 10.1155/2010/605921
  • 29. Rencüzoğullari E, Tüylü BA, Topaktaş M, Ila HB, Kayraldiz A et al. Genotoxicity of aspartame. Drug and Chemical Toxicology 2004; 27(3): 257-268. doi: 10.1081/DCT-120037506
  • 30. Bandyopadhyay A, Ghoshal S, Mukherjee A. Genotoxicity testing of low-calorie sweeteners: aspartame, acesulfame-K, and saccharin. Drug and Chemical Toxicology 2008; 31(4): 447-457. doi: 10.1080/01480540802390270
  • 31. Yılmaz S, Uçar A. A review of the genotoxic and carcinogenic effects of aspartame: does it safe or not? Cytotechnology 2014; 66(6): 875-881. doi: 10.1007/s10616-013-9681-0
  • 32. Kirkland D, Gatehouse D. Aspartame: A review of genotoxicity data. Food and Chemical Toxicology 2015; 84: 161-168. doi: 10.1016/j.fct.2015.08.021
  • 33. Soffritti M, Belpoggi F, Tibaldi E, Degli Esposti D, Lauriola M. Life-span exposure to low doses of aspartame beginning during prenatal life increases cancer effects in rats. Environmental Health Perspectives 2007; 115(9): 1293-1297. doi: 10.1289/ ehp.10271
  • 34. Gombos K, Varjas T, Orsós Z, Polyák E, Peredi J et al. The effect of aspartame administration on oncogene and suppressor gene expressions. In Vivo 2007; 21(1): 89-92.
  • 35. Lim U, Subar AF, Mouw T, Hartge P, Morton LM et al. Consumption of aspartame-containing beverages and incidence of hematopoietic and brain malignancies. Cancer Epidemiology, Biomarkers & Prevention 2006; 15(9): 1654- 1659. doi: 10.1158/1055-9965.EPI-06-0203
  • 36. Dooley J, Lagou V, Dresselaers T, van Dongen KA, Himmelreich U et al. No effect of dietary aspartame or stevia on pancreatic acinar carcinoma development, growth, or induced mortality in a murine model. Frontiers in Oncology 2017; 7: 18. doi: 10.3389/fonc.2017.00018
  • 37. Bosetti C, Gallus S, Talamini R, Montella M, Franceschi S et al. Artificial sweeteners and the risk of gastric, pancreatic, and endometrial cancers in Italy. Cancer Epidemiology, Biomarkers& Prevention 2009; 18(8): 2235-2238. doi: 10.1158/1055-9965.EPI-09-0365
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Abdulsamet ERDEN, Antonıs FANOURİAKİS, Levent KILIÇ, Alper SARI, Berkan ARMAĞAN, Emre BİLGİN, Yusuf Ziya ŞENER, Benazir HYMABACCUS, Fatih GÜRLER, Serdar CEYLAN, Sedat KİRAZ, Ömer KARADAĞ, Dımıtrıous BOUMPAS

Özgür ÇAKIR, İsa ÇAM, Ural KOÇ, Ercüment ÇİFTÇİ

Midkine level may be used as a noninvasive biomarker in Crohn’s disease

Tolga DÜZENLİ, Zeynal DOĞAN, Fatih KARAAHMET, Abdurrahim SAYILIR, Murat KEKİLLİ, Murat CAN, Yavuz BEYAZIT, Başak ÇAKAL, Alpaslan TANOĞLU

Does applied ultrasound prior to laparoscopy predict the existence of intra-abdominal adhesions?

Yasemin GÜNDÜZ, Alper KARACAN, Hilal Uslu YUVACI, Nermin AKDEMİR, Ünal ERKOKRMAZ, Arif Serhan CEVRİOĞLU, Abdurrahim KESKİN

Zuhal DAĞ, Hüseyin KÖSEOĞLU, Murat KEKİLLİ

Özden Özgür HOROZ, Vahide Nagehan ASLAN, Rıza Dinçer YILDIZDAŞ, Yasemin ÇOBAN, Yaşar SERTDEMİR, Awnı AL-SUBU

Tuğba KARAGÖZ, Ömer BAYIR, Emel Çadallı TATAR, Erman ÇAKAL, Ali ÖZDEK, Kemal KESEROĞLU, Mustafa ŞAHİN, Mehmet Hakan KORKMAZ

Different perspectives of immunizations during pregnancy

Osman Fadıl KARA, Gökçe CELEP, Aysu DUYAN ÇAMURDAN, Fatma Nur BARAN AKSAKAL

Dane EDİGER, Fatma Esra GÜNAYDIN, Müge ERBAY, Ümmühan ŞEKER

25-Hydroxy vitamin D level is associated with sleep disturbances in patients with chronic kidney disease on hemodialysis: a cross-sectional study

Demet YAVUZ, Düriye Sıla KARAGÖZ ÖZEN, Zeynep Banu RAMAZANOĞLU, Mehmet Derya DEMİRAĞ, Rahman YAVUZ