Role of FLT3 in the proliferation and aggressiveness of hepatocellular carcinoma

Role of FLT3 in the proliferation and aggressiveness of hepatocellular carcinoma

Background/aim: Previously we showed that Fms-like tyrosine kinase (FLT3) changes its cellular localization upon partial hepatectomy, suggesting a role in liver regeneration. FLT3 was also shown to play an important function in cellular proliferation and activation of PI3K and Ras. Thus, we aimed to investigate the role of FLT3 in hepatocellular tumorigenesis utilizing in vitro and in vivo models. Materials and methods: We used Snu398 cells that express FLT3. We investigated these cells in vitro proliferation and invasion abilities by treatment with the FLT3 inhibitor K-252a or by knocking-down with FLT3 shRNA,. Furthermore, the effect of blocking FLT3 activity and expression during in vivo tumorigenesis was assessed with xenograft models. Results: After K-252a treatment or stable knock-down, these cells proliferation and migration abilities were highly diminished in vitro. In addition, significant diminution in tumorigenicity of Snu398 cells was also obtained in vivo. When FLT3 knocked-down Snu398 cells were injected into nude mice, we did not detect αSMA expression in these tumors, suggesting a role for FLT3 in in vivo invasiveness. Conclusion: Our data provided evidence that FLT3 has a crucial role both in hepatocarcinogenesis and its invasiveness. Therefore, targeting FLT3 and/or its activity may be a promising tool for combating hepatocellular carcinomas.

___

  • 1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.
  • 2. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907–1917.
  • 3. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674–687.
  • 4. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 1991; 65: 1143– 1152.
  • 5. Drexler HG, Quentmeier H. FLT3: receptor and ligand. Growth Factors 2004; 22: 71–73.
  • 6. Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 2007; 109: 1643–1652.
  • 7. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.
  • 8. Matsusaka S, Tsujimura T, Toyosaka A, Nakasho K, Sugihara A, Okamoto E, Uematsu K, Terada N. Role of c-kit receptor tyrosine kinase in development of oval cells in the rat 2-acetylaminofluorene/partial hepatectomy model. Hepatology 1999; 29: 670–676.
  • 9. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 2004; 39: 1477– 1487.
  • 10. Aydin IT, Tokcaer Z, Dalgic A, Konu O, Akcali KC. Cloning and expression profile of FLT3 gene during progenitor celldependent liver regeneration. J Gastroenterol Hepatol 2007; 22: 2181–2188.
  • 11. McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol 2008; 82: 1–22.
  • 12. Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsuji K, Nakahata T,  Miyajima A. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc Natl Acad Sci USA 1999; 96: 7265–7270.
  • 13. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y, Miyawaki S,  Kuriyama K,  Shimazaki C,  Akiyama H et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004; 103: 1901–1908.
  • 14. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC, Beran M, Zhu Z, Ludwig D, Hicklin D et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 2004; 103: 267–274.
  • 15. Isern J, Fraser ST, He Z, Baron MH. Developmental niches for embryonic erythroid cells. Blood Cells Mol Dis 2010; 44: 207–208.
  • 16. Luc S, Buza-Vidas N, Jacobsen SE. Delineating the cellular pathways of hematopoietic lineage commitment. Semin Immunol 2008; 20: 213–220.
  • 17. Bayin SN. The role of FLT3 in hepatocellular carcinogenesis. MSc, Bilkent University, Ankara, Turkey, 2010.
  • 18. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 74: 248–254.
  • 19. Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer 2009; 8: 90.
  • 20. Petersen BE, Grossbard B, Hatch H, Pi L, Deng J, Scott EW. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 2003; 37: 632– 640.
  • 21. Zhang Y, Bai XF, Huang CX. Hepatic stem cells: existence and origin. World J Gastroenterol 2003; 9: 201–204.
  • 22. Joo SY, Choi BK, Kang MJ, Jung DY, Park KS, Park JB, Choi GS, Joh J, Kwon CH, Jung GO et al. Development of functional human immune system with the transplantations of human fetal liver/thymus tissues and expanded hematopoietic stem cells in RAG2-/-gamma(c)-/- MICE. Transplant Proc 2009; 41: 1885– 1890.
  • 23. Qiu C, Hanson E, Olivier E, Inada M, Kaufman DS, Gupta S, Bouhassira EE. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol 2005; 33: 1450–1458.
  • 24. Krupp M, Itzel T, Maass T, Hildebrandt A, Galle PR, Teufel A. CellLineNavigator: a workbench for cancer cell line analysis. Nucleic Acids Res. 2013; 41: D942–D948.
  • 25. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.
  • 26. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.
  • 27. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 2005; 315: 971–979.
  • 28. Cools J,  Mentens N,  Furet P, Fabbro D,  Clark JJ,  Griffin JD,  Marynen P,  Gilliland DG. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res 2004; 64: 6385– 6389.
  • 29. Yoshimoto  G,  Miyamoto  T,  Jabbarzadeh-Tabrizi  S, Iino T, Rocnik JL, Kikushige Y,  Mori Y, Shima T, Iwasaki H, Takenaka K et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 2009; 114: 5034–5043.
  • 30. Kojima K, Konopleva M, Tsao T, Andreeff M, Ishida H, Shiotsu Y, Jin L, Tabe Y, Nakakuma H. Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 via Mcl-1/Noxa axis. Leukemia 2010; 24: 33–43.
  • 31. Andrae N, Kirches E, Hartig R, Haase D, Keilhoff G, Kalinski T, Mawrin C. Sunitinib targets PDGF-receptor and FLT3 and reduces survival and migration of human meningioma cells. Eur J Cancer 2012; 48: 1831–1842.
  • 32. Boult JK, Terkelsen J, Walker-Samuel S, Bradley DP, Robinson SP. A multi-parametric imaging investigation of the response of C6 glioma xenografts to MLN0518 (tandutinib) treatment. PLoS One 2013; 26: e63024.
  • 33. Yan SB, Peek VL, Ajamie R, Buchanan SG, Graff JR, Heidler SA, Hui YH, Huss KL, Konicek BW, Manro JR et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest New Drugs 2013; 31: 833–844.
  • 34. Hernandez-Gea  V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144: 512– 527.
  • 35. Paradziej-Łukowicz J,  Skwarska A,  Peszyńska-Sularz G, Brillowska-Dabrowska A, Konopa J. Anticancer imidazoacridinone C-1311 inhibits  hypoxia-inducible factor1α (HIF-1α), vascular endothelial growth factor (VEGF) and angiogenesis. Cancer Biol Ther 2011; 12: 586–597.
  • 36. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.
  • 37. van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M,  Machat G, Grubinger M, Huber H, Mikulits W. Epithelialmesenchymal transition in hepatocellular carcinoma. Future Oncol 2009; 5: 1169–1179.
  • 38. Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 2009; 69: 223–240.
  • 39. Ranieri G, Gadaleta-Caldarola G, Goffredo V, Patruno R, Mangia A, Rizzo A, Sciorsci RL, Gadaleta CD. Sorafenib (BAY 43-9006) in hepatocellular carcinoma patients: from discovery to clinical development. Curr Med Chem 2012; 19: 938–944.
  • 40. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 27: 3129– 3140.
  • 41. Autier J, Escudier B, Wechsler J, Spatz A, Robert C. Prospective study of the cutaneous adverse effects of sorafenib, a novel multikinase inhibitor. Arch Dermatol 2008; 144: 886–892.
  • 42. Chu D, Lacouture ME, Fillos T, Wu S. Risk of hand-foot skin reaction with sorafenib: a systematic review and meta-analysis. Acta Oncol 2008; 47: 176–186.