Risk of autism spectrum disorder in children with a history of hospitalization for neonatal jaundice

Risk of autism spectrum disorder in children with a history of hospitalization for neonatal jaundice

Background/aim: Limited research has focused explicitly on the association between neonatal jaundice and autism spectrum disorder (ASD), and inconclusive evidence exists in the literature within this framework. This study aimed specifically to investigate whether neonatal jaundice is a potential risk factor for ASD and whether there is a connection between the types of neonatal jaundice and the severity of ASD. Materials and method: This study involved 119 children with ASD [90 males (75.6%), 29 females (24.4%), mean age: 45.39 ± 11.29 months] and 133 healthy controls [100 males (75.2%), 33 females (24.8%), mean age: 46.92 ± 11.42 months]. Psychiatric disorders were diagnosed through the Diagnostic and Statistical Manual of Mental Disorders criteria. Childhood Autism Rating Scale (CARS) was used to assess the screening and diagnosis of autism. A specially prepared personal information sheet was employed to investigate sociodemographic characteristics and birth and clinical histories. Results: The rate of the history of jaundice and pathological jaundice requiring hospitalization and phototherapy were significantly higher in the ASD group compared to the controls. CARS total score and the mean scores of nearly all items were statistically higher in children with a history of pathological jaundice than those with a history of physiological jaundice. Conclusion: Neonatal jaundice, depends on its severity, seems to be one of the possible biological factors associated with subsequent development of and the severity of ASD. Establishing a causal relationship between neonatal jaundice and ASD by more comprehensive studies may contribute to alleviating of the severity of ASD for individuals at risk.Key words: Newborn, autism spectrum disorder, neonatal jaundice, phototherapy

___

  • 1. American Psychiatric Association. DSM-5 Diagnostic Classification. Diagnostic and statistical Manual Of Mental Disorders. 5th ed. Washington,DC, USA: American Psychiatric Association Publishing 2013.
  • 2. Çiçek AU, Akdag E, Erdivanli OC. Sociodemographic characteristics associated with speech and language delay and disorders. Journal of Nervous and Mental Disease 2020; 208 (2): 143-146. doi: 10.1097/NMD.0000000000001120
  • 3. Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cellular and Molecular Life Sciences 2019; 76 (7): 1275- 1297. doi: 10.1007/s00018-018-2988-4
  • 4. Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine 2017; 96 (18): e6696. doi:10.1097/MD.0000000000006696
  • 5. Burke BL, Robbins JM, Bird TM, Hobbs CA, Nesmith C et al. Trends in hospitalizations for neonatal jaundice and kernicterus in the United States, 1988-2005. Pediatrics 2009; 123 (2) : 524- 532. doi: 10.1542/peds.2007-2915
  • 6. Kujabi ML, Petersen JP, Pedersen MV, Parner ET, Henriksen TB. Neonatal jaundice and autism spectrum disorder: a systematic review and meta-analysis. Pediatric Research 2021; 1-16. doi: 10.1038/s41390-020-01272-x
  • 7. Çoban A, Türkmen MK, Gürsoy T. Turkish neonatal society guideline to the approach, follow-up, and treatment of neonatal jaundice. Turkish Archives of Pediatrics 2018; 53 (1): 172-179. doi: 10.5152/TurkPediatriArs.2018.01816
  • 8. Bhutani VK, Johnson-Hamerman L. The clinical syndrome of bilirubin-induced neurologic dysfunction. Seminars in Fetal & Neonatal Medicine 2015; 20 (1): 6-13. doi: 10.1016/j. siny.2014.12.008
  • 9. Amin SB, Smith T, Timler G. Developmental influence of unconjugated hyperbilirubinemia and neurobehavioral disorders. Pediatric Research 2019; 85 (2): 191-197. doi: 10.1038/ s41390-018-0216-4
  • 10. Brites D. Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Seminars in Perinatology 2011; 35 (3): 114-120. doi:10.1053/j.semperi. 2011.02.004
  • 11. Johnson L, Bhutani VK. The clinical syndrome of bilirubininduced neurologic dysfunction. Seminars in Perinatology 2011; 35 (3): 101-113. doi: 10.1053/j.semperi.2011.02.003
  • 12. Maimburg RD, Bech BH, Vaeth M, Møller-Madsen B, Olsen J. Neonatal jaundice, autism, and other disorders of psychological development. Pediatrics 2010; 126 (5): 872-878. doi: 10.1542/ peds.2010-0052
  • 13. Maimburg RD, Vaeth M, Schendel DE, Bech BH, Olsen J et al. Neonatal jaundice: a risk factor for infantile autism? Paediatric and Perinatal Epidemiology 2008; 22 (6): 562-568. doi: 10.1111/j.1365-3016.2008.00973.x
  • 14. Duan G, Yao M, Ma Y, Zhang W. Perinatal and background risk factors for childhood autism in central China. Psychiatry Research 2014; 220 (1-2): 410-417. doi: 10.1016/j. psychres.2014.05.057
  • 15. Lozada LE, Nylund CM, Gorman GH, Hisle-Gorman E, ErdieLalena CR et al. Association of autism spectrum disorders with neonatal hyperbilirubinemia. Global Pediatric Health 2015; 2: 1-5. doi: 10.1177/2333794X15596518
  • 16. Jenabi E, Bashirian S, Khazaei S. Association between neonatal jaundice and autism spectrum disorders among children: a meta-analysis. Clinical and Experimental Pediatrics 2020; 63 (1): 8-13. doi: 10.3345/kjp.2019.00815
  • 17. Amin SB, Smith T, Wang H. Is neonatal jaundice associated with autism spectrum disorders: A systematic review. Journal of Autism and Developmental Disorders 2011; 41 (11): 1455– 1463. doi: 10.1007/s10803-010-1169-6
  • 18. Bhattarai A, KC N, Subedi N, KC N, Bijukchhe SM et al. Prenatal and perinatal risk factors for autism at national children’s hospital. Journal of Gandaki Medical College-Nepal 2018; 11 (2): 67-73. doi:10.3126/jgmcn.v11i02.22987
  • 19. Croen LA, Yoshida CK, Odouli R, Newman TB. Neonatal hyperbilirubinemia and risk of autism spectrum disorders. Pediatrics 2005; 115 (2): e135-138. doi: 10.1542/peds.2004- 1870
  • 20. Froehlich-Santino W, Londono Tobon A, Cleveland S, Torres A, Phillips J et al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders. Journal of Psychiatric Research 2014; 54: 100-108. doi: 10.1016/j.jpsychires.2014.03.019
  • 21. Wu YW, Kuzniewicz MW, Croen L, Walsh EM, McCulloch CE et al. Risk of autism associated with hyperbilirubinemia and phototherapy. Pediatrics 2016; 138 (4): e20161813. doi: 10.1542/peds.2016-1813
  • 22. Schopler E, Reichler RJ, DeVellis RF, Daly K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of Autism and Developmental Disorders 1980; 10 (1): 91-103. doi: 10.1007/BF02408436
  • 23. Sucuoğlu B, Öktem F, Akkök F, Gökler B. A Study about childhood autism scales. Journal Psychiatry Psychology Psychopharmacology 1996; 4 (2): 116-121.
  • 24. Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D et al. Gene×Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Frontiers in Psychiatry 2014; 5: 53. doi: 10.3389/fpsyt.2014.00053
  • 25. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B et al. Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry 2011; 68 (11): 1095-1102. doi: 10.1001/archgenpsychiatry.2011.76
  • 26. Hisle-Gorman E, Susi A, Stokes T, Gorman G, Erdie-Lalena C et al. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatric Research 2018; 84 (2): 190-198. doi: 10.1038/pr.2018.23
  • 27. Mamidala MP, Polinedi A, P.T.V PK, Rajesh N, Vallamkonda R et al. Prenatal, perinatal and neonatal risk factors of autism spectrum disorder: a comprehensive epidemiological assessment from India. Research in Developmental Disabilities 2013; 34 (9): 3004-3013. doi: 10.1016/j.ridd.2013.06.019
  • 28. Tsao PC, Yeh HL, Shiau YS, Chang YC, Chiang SH et al. Longterm neurodevelopmental outcomes of significant neonatal jaundice in Taiwan from 2000-2003: a nationwide, populationbased cohort study. Scientific Reports 2020; 10 (1): 11374. doi: 10.1038/s41598-020-68186-w
  • 29. Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparén P et al. Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 2009; 124 (5): e817-825. doi: 10.1542/peds.2008-3582
  • 30. Cordero C, Schieve LA, Croen LA, Engel SM, Siega-Riz AM et al. Neonatal jaundice in association with autism spectrum disorder and developmental disorder. Journal of Perinatology 2020; 40 (2): 219-225. doi: 10.1038/s41372-019-0452-4
  • 31. Zhang X, Lv CC, Tian J, Miao RJ, Xi W et al. Prenatal and perinatal risk factors for autism in China. Journal of Autism and Developmental Disorders 2010; 40 (11): 1311-1321. doi: 10.1007/s10803-010-0992-0
  • 32. Rylaarsdam L, Guemez-Gamboa A. Genetic causes and modifiers of autism spectrum disorder. Frontiers in Cellular Neuroscience 2019; 13: 385. doi: 10.3389/fncel.2019.00385
  • 33. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience 2005; 23 (2-3): 183- 187. doi: 10.1016/j.ijdevneu.2004.09.006
  • 34. Cheung C, Yu K, Fung G, Leung M, Wong C et al. Autistic disorders and schizophrenia: related or remote? An anatomical likelihood estimation. PLoS One 2010; 5 (8): e12233. doi: 10.1371/journal.pone.0012233
  • 35. Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage- -mechanisms and management approaches. New England Journal of Medicine 2013; 369 (21): 2021-2030. doi: 10.1056/ NEJMra1308124
  • 36. Wusthoff CJ, Loe IM. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Seminars in Fetal & Neonatal Medicine 2015; 20 (1): 52-57. doi: 10.1016/j. siny.2014.12.003
  • 37. Gathwala G, Sharma S. Oxidative stress, phototherapy and the neonate. Indian Journal of Pediatrics 2000; 67 (11): 805-808. doi: 10.1007/BF02726223
  • 38. Sirota L, Straussberg R, Gurary N, Aloni D, Bessler H. Phototherapy for neonatal hyperbilirubinemia affects cytokine production by peripheral blood mononuclear cells. European Journal of Pediatrics 1999; 158 (11): 910-913. doi: 10.1007/ s004310051240
  • 39. Ramy N, Ghany EA, Alsharany W, Nada A, Darwish RK et al. Jaundice, phototherapy and DNA damage in full-term neonates. Journal of Perinatology 2016; 36 (2): 132-136. doi: 10.1038/jp.2015.166
  • 40. Besag FM. Epilepsy in patients with autism: links, risks and treatment challenges. Neuropsychiatric Disease and Treatment 2017; 14: 1-10. doi: 10.2147/NDT.S120509
  • 41. Saemundsen E, Ludvigsson P, Hilmarsdottir I, Rafnsson V. Autism spectrum disorders in children with seizures in the first year of life - a population-based study. Epilepsia 2007; 48 (9): 1724-1730. doi: 10.1111/j.1528-1167.2007.01150.x
  • 42. Ko C, Kim N, Kim E, Song DH, Cheon KA. The effect of epilepsy on autistic symptom severity assessed by the social responsiveness scale in children with autism spectrum disorder. Behavioral and Brain Functions 2016; 12 (1): 20. doi: 10.1186/s12993-016-0105-0
  • 43. Tuchman R, Moshé SL, Rapin I. Convulsing toward the pathophysiology of autism. Brain & Development 2009; 31 (2): 95-103. doi: 10.1016/j.braindev.2008.09.009
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Non-adherence to colchicine treatment is a common misevaluation in familial Mediterranean fever

Muhammet ÇINAR, Emre TEKGÖZ, Sedat YILMAZ, Seda ÇOLAK, Fatma İlknur ÇINAR

Comparison of SARS-COV-2 antibody assays in PCR negative and PCR positive Turkish patients

Rabia CAN SARINOĞLU, Volkan KORTEN, Ayşegül KARAHASAN, Hüseyin BİLGİN, Nuri Cağatay ÇİMSİT, Barış CAN

Exercise capacity, muscle strength, dyspnea, physical activity, and quality of life in preoperative patients with lung cancer

Gülşah BARĞI, Ali ÇELİK, İsmail Cüneyt KURUL, , Ece BAYTOK, Zeliha ÇELİK, Meral BOŞNAK GÜÇLÜ

Effect of coronavirus pandemic on organ donation and transplantation in Turkey

Mutlu UYSAL YAZICI, Emine Gülşah TORUN

Interleukin-21: a potential biomarker for diagnosis and predicting prognosis in COVID-19 patients

Aslı GÖREK DİLEKTAŞLI, Ezgi DEMİRDÖĞEN, Mehmet KARADAĞ, Ayşe Esra UZASLAN, Ahmet URSAVAŞ, Dane EDİGER, Haluk Barbaros ORAL, Nilüfer Aylin ACET ÖZTÜRK, Necmiye Funda COŞKUN, Diğdem YÖYEN ERMİŞ, Mert KARACA, Shahriyar MAHARRAMOV, Gamze YAZICI

Diagnostic value of procalcitonin and C reactive protein for infection and sepsis in elderly patients

Çiler ZİNCİRCİOĞLU, Hüseyin ÖZKARAKAŞ, Aykut SARITAŞ, Gürsel ERSAN, Kazım ROLLAS, Nimet ŞENOĞLU, Işıl Köse GÜLDOĞAN

Clinical features and immunoglobulin replacement therapy outcomes of adults with common variable immunodeficiency: a single centre experience

Tuba ERDOĞAN, Uğur MUŞABAK

Incidence, risk factors, and adverse outcomes of acute kidney injury in very premature neonates: a single center experience

Nuran ÜSTÜN

The visceral adiposity index, lipid accumulation product, and plasma atherogenic index are associated with subclinical atherosclerosis in patients with newly diagnosed acromegaly

Mustafa ÖZBEK, Erman ÇAKAL, Murat ÇALAPKULU, Hayri BOSTAN, İlknur ÖZTÜRK ÜNSAL, Sema HEPŞEN, Muhammed Erkam SENCAR

Relationship between c-reactive protein to albumin ratio and coronary artery calcium score and CAD-RADS scores with coronary computed tomography angiography

Mehmet Akif ERDÖL, Kadriye GAYRETLİ YAYLA