Protective effect of cyclosporine A in the treatment of severe hydronephrosis in a rabbit renal pelvic perfusion model

Protective effect of cyclosporine A in the treatment of severe hydronephrosis in a rabbit renal pelvic perfusion model

Background/aim: Cyclosporine A (CsA), a traditional immunosuppressive compound, has been reported to specifically prevent ischemia reperfusion tissue injury via apoptosis pathway. This study aimed to explore the renoprotective effects of CsA on the kidneys ofrabbits undergoing renal pelvic perfusion.Materials and methods: A total of 30 rabbits were randomly assigned into a control group (n = 6) and an experimental group (n = 24).The experimental group underwent a surgical procedure that induced severe hydronephrosis and was then stochastically divided into 4groups (S1, S1’, S2, and S2’), consisting of 6 rabbits each. Groups S1 and S1’ were perfused with 20 mmHg of fluid, while groups S2 andS2’ were perfused with 60 mmHg of fluid. Administration to groups S1’ and S2’ was done intravenously, with CsA once a day for 1 weekbefore perfusion. In the control group, after severe hydronephrosis was induced, a sham operation was performed in a second laparotomy. Acute kidney damage was evaluated using hematoxylin and eosin staining, in addition to analyzing the mitochondrial ultrastructureand mitochondrial membrane potential (MMP). The cytochrome C (CytC) and neutrophil gelatinase-associated lipocalin (NGAL)expression were examined immunohistochemically using Western blotting and reverse transcription-polymerase chain reaction.Results: It was found that the renal histopathological damage was ameliorated, mitochondrial vacuolization was lower, MMP was higher, and the CytC and NGAL contents were decreased after drug intervention (groups S1’ and S2’) when compared to the experimentalgroups (S1 and S2). Furthermore, there was no difference between drug intervention groups S1’ and S2’.Conclusion: These results suggest that CsA can attenuate renal damage from severe hydronephrosis induced by renal pelvic perfusionin rabbits. It plays a protective role in the acute kidney injury process, possibly through increased MMP and mitochondrial changes.

___

  • 1. Elashry OM, Elgamasy AK, Sabaa MA, Abo-Elenien M, Omar MA et al. Ureteroscopic management of lower ureteric calculi: a 15-year single-centre experience. BJU International 2008; 102 (8): 1010-1017. doi: 10.1111/j.1464-410X.2008.07747.x
  • 2. Nabi G, Downey P, Keeley F, Watson G, McClinton S. Extra-corporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database of Systematic Reviews 2007; 24 (1): CD006029. doi: 10.1002/14651858.CD006029.pub2
  • 3. Wang J, Zhou DQ, He M, Li WG, Pang X et al. Effects of renal pelvic high-pressure perfusion on nephrons in a porcine pyonephrosis model. Experimental and Therapeutic Medicine 2013; 5 (5): 1389-1392. doi: 10.3892/etm.2013.1023
  • 4. Shao Y, Sha M, Chen L, Li D, Lu J et al. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model. American Journal of Physiology-Renal Physiology 2016; 311 (5): F915-F925. doi: 10.1152/ajprenal.00480.2015
  • 5. Tai CK, Li SK, Fung TC. Measurement of renal intrapelvic pressure during minimally invasive percutaneous nephrolithotomy (MPCNL), using pressurized irrigation of 350 mmHg. European Urology Supplements 2014; 7 (3): 190- 190. doi:10.1016/S1569-9056(08)60474-1
  • 6. Cao Z, Yu W, Li W, Cheng F, Xia Y et al. Acute kidney injuries induced by various irrigation pressures in rat models of mild and severe hydronephrosis. Urology 2013; 82 (6): 1453.e9-e16. doi: 10.1016/j.urology.2013.08.024
  • 7. Alexopoulos P, Panoutsopoulou K, Vogiatzis G, Koletsis E, Dougenis D et al. Combined treatment with exenatide and cyclosporine A or parstatin 1-26 results in enhanced reduction of infarct size in a rabbit model. Journal of Cardiovascular Pharmacology 2017; 70 (1): 34-41. doi: 10.1097/ FJC.0000000000000492
  • 8. Tachibana T, Shiiya N, Kunihara T, Wakamatsu Y, Kudo AF et al. Immunophilin ligands FK506 and cyclosporine A improve neurologic and histopathologic outcome after transient spinal cord ischemia in rabbits. Journal of Thoracic and Cardiovascular Surgery 2005; 129 (1): 123-128. doi: 10.1016/j. jtcvs.2004.04.047
  • 9. Nighoghossian N, Ovize M, Mewton N, Ong E, Cho TH. Cyclosporine A, a potential therapy of ischemic reperfusion injury. A common history for heart and brain. Cerebrovascular Diseases 2016; 42 (5): 309-318. doi: 10.1159/000446850
  • 10. Li J, Yan Z, Fang Q. A mechanism study underlying the protective effects of cyclosporine-A on lung ischemiareperfusion injury. Pharmacology 2017; 100 (1): 83-90. doi: 10.1159/000458760
  • 11. Lemoine S, Pillot B, Augeul L, Rabeyrin M, Varennes A et al. Dose and timing of injections for effective cyclosporine A pretreatment before renal ischemia reperfusion in mice. PloS One 2017; 12 (8): e0182358. doi: 10.1371/journal.pone.0182358
  • 12. Ikeda G, Matoba T, Nakano Y, Nagaoka K, Ishikita A et al. Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Scientific Reports 2016; 6: 20467. doi: 10.1038/ srep20467
  • 13. Wen JG, Chen Y, F Frøkiaer J, Jørgensen TM, Djurhuus JC. Experimental partial unilateral ureter obstruction. I. Pressure flow relationship in a rat model with mild and severe acuteureter obstruction. Journal of Urology 1998; 160 (4): 1567-1571.doi: 10.1016/S0022-5347(01)62614-4
  • 14. Lemasters JJ, Qian T, He L, Kim JS, Elmore SP et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxidants & Redox Signaling 2002; 18 (4): 769-781. doi: 10.1089/152308602760598918
  • 15. Devalaraja-Narashimha K, Diener AM, Padanilam, BJ. Cyclophilin D gene ablation protects mice from ischemic renal injury. American Journal of Physiology-Renal Physiology 2015; 297 (3): F749-F759. doi: 10.1152/ajprenal.00239.2009
  • 16. Cho SG, Du Q, Huang S, Dong Z. Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. American Journal of Physiology-renal Physiology 2010; 299 (1): F199-F206. doi: 10.1152/ajprenal.00716.2009
  • 17. Zhang W, Zhao Y, Liu X. Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning. Chinese Medical Journal 2015; 124 (14): 2191-2195. doi: 10.3760/ cma.j.issn.0366-6999. 2011.14.020
  • 18. Gharanei M, Hussain A, Janneh O, Maddock HL. Doxorubicin induced myocardial injury is exacerbated following ischemic stress via opening of the mitochondrial permeability transition pore. Toxicology and Applied Pharmacology 2015; 268 (2): 149-156. doi: 10.1016/j.taap.2012.12.003
  • 19. Marechal X, Montaigne D, Marciniak C, Marchetti P, Hassoun SM et al. Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics. Clinical Science 2011; 121 (6): 405-413. doi: 10.1042/CS20110069
  • 20. Piot C, Croisille P, Staat P, Thibault H, Rioufol G et al. Effect of cyclosporine on reperfusion injury in acutemyocardial infarction. New England Journal of Medicine 2008; 359 (5): 473-481. doi: 10.1056/NEJMoa071142
  • 21. Cour M, Abrial M, Jahandiez V, Loufouat J, Belaïdi E et al. Ubiquitous protective effects of cyclosporine A in preventing cardiac arrest-induced multiple organ failure. Journal of Applied Physiology 2014; 117 (8): 930-936. doi: 10.1152/ japplphysiol.00495.2014
  • 22. Sun J, Luan Q, Dong H, Song W, Xie K et al. Inhibition of mitochondrial permeability transition pore opening contributes to the neuroprotective effects of ischemic postconditioning in rats. Brain Research 2015; 1436: 101110. doi: 10.1016/j.brainres.2011.11.055
  • 23. Leger PL, De Paulis D, Li B, Bonnin P, Couture-Lepetit E et al. Evaluation of cyclosporine A in a stroke model in the immature brain. Experimental Neurology 2011; 230 (1): 58-66. doi: 10.1016/j.expneurol.2010.06.009
  • 24. Duan Q, Wang X, Wang Z, Lu T, Han Y et al. Role of mitochondria in neuron apoptosis during ischemiareperfusion injury. Journal of Huazhong University of Science and Technology-Medical Sciences 2004; 24 (5): 441-444. doi: 10.1007/bf02831103
  • 25. Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. American Journal of Physiology-cell Physiology 2007; 292 (1): C33-C44. doi: 10.1152/ajpcell.00243.2006
  • 26. Borutaite V, Jekabsone A, Morkuniene R, Brown GC. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. Journal of Molecular and Cellular Cardiology 2003; 35 (4): 357-366. doi: 10.1016/s0022- 2828(03)00005-1
  • 27. Halestrap AP. What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 2009; 46 (6): 821-831. doi: 10.1016/j.yjmcc.2009.02.021
  • 28. Noto A, Cibecchini F, Fanos V, Mussap M. NGAL and metabolomics: the single biomarker to reveal the metabolome alterations in kidney injury. Biomed Research International 2013; 2013: 612032. doi: 10.1155/2013/612032
  • 29. Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 2013; 128 (14): 1555-1565. doi: 10.1161/ CIRCULATIONAHA.113.001225
  • 30. Osman MM, Lulic D, Glover L, Stahl CE, Lau T et al. Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides 2011; 45 (6): 359-368. doi: 10.1016/j. npep.2011.04.002
  • 31. Kaminska B, Gaweda-Walerych K, Zawadzka M. Molecular mechanisms of neuroprotective action of immunosuppressantsfacts and hypotheses. Journal of Cellular and Molecular Medicine. 2004; 8 (1): 45-58. doi: 10.1111/j.1582-4934.2004. tb00259.x
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Evaluation of interleukin-23 receptor (IL-23R) gene polymorphisms and serum IL-23 levels in patients with psoriasis

Kuyaş Hekimler ÖZTÜRK, Selma KORKMAZ, Seda ÇELİK, Başak FİLİZ, Fevziye Burcu ŞİRİN, İjlal ERTURAN, Mehmet YILDIRIM, Hikmet ORHAN

Elifcan Aladağ KARAKULAK, Salih AKSU, Haluk DEMİROĞLU, Nilgün SAYINALP, Hakan GÖKER, İbrahim Celalettin HAZNEDAROĞLU, Osman İlhami ÖZCEBE, Yahya BÜYÜKAŞIK

Stage 1 hybrid palliation of hypoplastic left heart syndrome: an initial experience in pulmonary trunk approach, procedural modifications, and complication management

Ayşen Yaprak ENGİN, Volkan ÇAKIR, Emrah AKAY, Onur IŞIK

Erdoğan ÖZTÜRK, Mustafa Said AYDOĞAN, Kazim KARAASLAN, Zafer DOĞAN, Ufuk TOPUZ

Unclassifiable non-CML classical myeloproliferative diseases with microcytosis: findings indicating diagnosis of polycythemia vera masked by iron deficiency

Osman İlhami ÖZCEBE, İbrahim Celalettin HAZNEDAROĞLU, Salih AKSU, Nilgün SAYINALP, Hakan GÖKER, Elifcan ALADAĞ, Haluk DEMİROĞLU, Yahya BÜYÜKAŞIK

Canal wall down versus canal wall up surgeries in the treatment of middle ear cholesteatoma

Yıldırım Ahmet BAYAZIT, Süleyman CEBECİ, Recep KARAMERT, Nagihan GÜLHAN, Mehmet Ekrem ZORLU, Mehmet DÜZLÜ, Mehmet Birol UĞUR, Ayşe İRİZ, Fakih Cihat ERAVCI, Hakan TUTAR

Comparison of atrial fibrillation predictors in patients with acute coronary syndrome using ticagrelor or clopidogrel

Mert AKER, Mehmet Ali FELEKOĞLU, İlkin GULİYEV, Murat TULMAÇ, Mehmet ERAT, Hamza SUNMAN, Sadık AÇIKEL, Tolga ÇİMEN, Engin ALGÜL, Muhammet DURAL

Ben Zheng ZHOU, Da Hu ZHANG, Wei Min YU, Jin Zhuo NING

Caner ÇAKIR, İsmet Çiğdem KILIÇ, Dilek YÜKSEL, Yalin Ay KARYAL, İşin ÜREYEN, Gökhan BOYRAZ, Yasin DURMUŞ, Murat GÜLTEKİN, Nejat ÖZGÜL, Mustafa Alper KARALÖK, Mehmet Coşkun SALMAN, Kunter YÜCE, Ahmet Taner TURAN

Recep KARAMERT, Fakih Cihat ERAVCI, Süleyman CEBECİ, Mehmet DÜZLÜ, Mehmet Ekrem ZORLU, Nagihan Gülhan YAŞAR, Hakan TUTAR, Mehmet Birol UĞUR, Ayşe İRİZ, Yildirim Ahmet BAYAZIT