Polymorphisms in androgen metabolism genes AR, CYP1B1, CYP19, and SRD5A2 and prostate cancer risk and aggressiveness in Bulgarian patients
Polymorphisms in androgen metabolism genes AR, CYP1B1, CYP19, and SRD5A2 and prostate cancer risk and aggressiveness in Bulgarian patients
Background/aim: The aim of our study was to elucidate the role of polymorphisms in AR, CYP1B1, CYP19, and SRD5A2 genes for prostate cancer (PC) development in Bulgarian patients. Materials and methods: We genotyped 246 PC patients and 261 controls (155 with benign prostate hyperplasia and 107 healthy population controls) using direct sequencing, PCR-RFLP, SSCP, and fragment analysis. Results: The allele and genotype frequencies of most of the studied variants did not differ significantly between cases and controls. Increased frequencies of the C/C genotype and C allele of rs1056837 in CYP1B1, and genotype 7/8 of the (TTTA)n repeat polymorphism in CYP19, were observed in patients in comparison with controls. The 8/9 and the 7/12 genotypes of (TTTA)n in CYP19 showed suggestive evidence for association with decreased prostate cancer risk and the risk for aggressive disease, respectively. The haplotype analysis revealed 2 CYP1B1 haplotypes associated with PC risk reduction. Conclusion: Some CYP1B1 haplotypes and genotypes of the CYP19 (TTTA)n repeat appeared to be associated with disease risk or aggressiveness in Bulgarian PC patients. In contrast, the SRD5A2 polymorphisms (V89L and (TA)n repeat), the CAG repeat in AR, and the Arg264Cys variant in CYP19A1 are most likely not implicated in prostate carcinogenesis.
___
- 1. Ellem SJ, Risbridger GP. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J Steroid Biochem Mol Biol 2010; 118: 246251.
- 2. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24: 19672000.
- 3. Pastina I, Giovannetti E, Chioni A, Sissung TM, Crea F, Orlandini C, Price DK, Cianci C, Figg WD, Ricci S et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in castration-resistant prostate cancer (CRPC) patients. BMC Cancer 2010; 10: 511.
- 4. Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, Zattoni F. EAU guidelines on prostate cancer. Eur Urol 2008; 53: 6880.
- 5. Schleutker J. Polymorphisms in androgen signaling pathway predisposing to prostate cancer. Mol Cell Endocrinol 2012; 360: 2537.
- 6. Beuten J, Gelfond JA, Byrne JJ, Balic I, Crandall AC, JohnsonPais TL, Thompson IM, Price DK, Leach RJ. CYP1B1 variants are associated with prostate cancer in non-Hispanic and Hispanic Caucasians. Carcinogenesis 2008; 29: 17511757.
- 7. Registry BNC. Cancer incidence in Bulgaria 2010. Sofia, Bulgaria: AVIS-24 Ltd.; 2012.
- 8. Li J, Coates RJ, Gwinn M, Khoury MJ. Steroid 5-α-reductase type 2 (SRD5a2) gene polymorphisms and risk of prostate cancer: a HuGE review. Am J Epidemiol 2010; 171: 113.
- 9. Beuten J, Gelfond JA, Franke JL, Weldon KS, Crandall AC, Johnson-Pais TL, Thompson IM, Leach RJ. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2009; 18: 18691880.
- 10. Tang L, Yao S, Till C, Goodman PJ, Tangen CM, Wu Y, Kristal AR, Platz EA, Neuhouser ML, Stanczyk FZ et al. Repeat polymorphisms in estrogen metabolism genes and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Carcinogenesis 2011; 32: 15001506.
- 11. Richie JP. Anti-androgens and other hormonal therapies for prostate cancer. Urology 1999; 54: 1518.
- 12. Balistreri CR, Caruso C, Carruba G, Miceli V, Candore G. Genotyping of sex hormone-related pathways in benign and malignant human prostate tissues: data of a preliminary study. Omics 2011; 15: 369374.
- 13. Cussenot O, Azzouzi AR, Nicolaiew N, Fromont G, Mangin P, Cormier L, Fournier G, Valeri A, Larre S, Thibault F et al. Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J Clin Oncol 2007; 25: 35963602.
- 14. Modugno F, Weissfeld JL, Trump DL, Zmuda JM, Shea P, Cauley JA, Ferrell RE. Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 2001; 7: 30923096.
- 15. Li X, Huang Y, Fu X, Chen C, Zhang D, Yan L, Xie Y, Mao Y, Li Y. Meta-analysis of three polymorphisms in the steroid-5- alpha-reductase, alpha polypeptide 2 gene (SRD5A2) and risk of prostate cancer. Mutagenesis 2011; 26: 371383.
- 16. Wang C, Tao W, Chen Q, Hu H, Wen XY, Han R. SRD5A2 V89L polymorphism and prostate cancer risk: a meta-analysis. Prostate 2010; 70: 170178.
- 17. Ntais C, Polycarpou A, Ioannidis JP. SRD5A2 gene polymorphisms and the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003; 12: 618624.
- 18. Li J, Mercer E, Gou X, Lu YJ. Ethnical disparities of prostate cancer predisposition: genetic polymorphisms in androgenrelated genes. Am J Cancer Res 2013; 3: 127151.
- 19. Zeegers MP, Kiemeney LA, Nieder AM, Ostrer H. How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol Biomarkers Prev 2004; 13: 17651771.
- 20. Lindstrom S, Ma J, Altshuler D, Giovannucci E, Riboli E, Albanes D, Allen NE, Berndt SI, Boeing H, Bueno-de-Mesquita HB et al. A large study of androgen receptor germline variants and their relation to sex hormone levels and prostate cancer risk. Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. J Clin Endocrinol Metab 2010; 95: E121127.
- 21. Price DK, Chau CH, Till C, Goodman PJ, Baum CE, Ockers SB, English BC, Minasian L, Parnes HL, Hsing AW et al. Androgen receptor CAG repeat length and association with prostate cancer risk: results from the prostate cancer prevention trial. J Urol 2010; 184: 22972302.
- 22. Misra D, Xie W, Regan MM, Ross RW, Lee GS, Germain D, Kantoff PW, Oh WK. Germline CAG repeat length of the androgen receptor and time to progression in patients with prostate cancer treated with androgen deprivation therapy. BJU Int 2011; 108: 10861091.
- 23. Carnell DM, Smith RE, Daley FM, Barber PR, Hoskin PJ, Wilson GD, Murray GI, Everett SA. Target validation of cytochrome P450 CYP1B1 in prostate carcinoma with protein expression in associated hyperplastic and premalignant tissue. Int J Radiat Oncol Biol Phys 2004; 58: 500509.
- 24. Chang BL, Zheng SL, Isaacs SD, Turner A, Hawkins GA, Wiley KE, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB et al. Polymorphisms in the CYP1B1 gene are associated with increased risk of prostate cancer. Br J Cancer 2003; 89: 1524 1529.
- 25. Tanaka Y, Sasaki M, Kaneuchi M, Shiina H, Igawa M, Dahiya R. Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer. Biochem Biophys Res Commun 2002; 296: 820826.
- 26. Cicek MS, Liu X, Casey G, Witte JS. Role of androgen metabolism genes CYP1B1, PSA/KLK3, and CYP11alpha in prostate cancer risk and aggressiveness. Cancer Epidemiol Biomarkers Prev 2005; 14: 21732177.
- 27. Zhang H, Li L, Xu Y. CYP1B1 polymorphisms and susceptibility to prostate cancer: a meta-analysis. PLoS One 2013; 8: e68634.
- 28. Travis RC, Schumacher F, Hirschhorn JN, Kraft P, Allen NE, Albanes D, Berglund G, Berndt SI, Boeing H, Buenode-Mesquita HB et al. CYP19A1 genetic variation in relation to prostate cancer risk and circulating sex hormone concentrations in men from the Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiol Biomarkers Prev 2009; 18: 27342744.
- 29. Ntais C, Polycarpou A, Tsatsoulis A. Molecular epidemiology of prostate cancer: androgens and polymorphisms in androgenrelated genes. Eur J Endocrinol 2003; 149: 469477.
- 30. Chu LW, Reichardt JK, Hsing AW. Androgens and the molecular epidemiology of prostate cancer. Curr Opin Endocrinol Diabetes Obes 2008; 15: 261270.
- 31. Latil AG, Azzouzi R, Cancel GS, Guillaume EC, CochanPriollet B, Berthon PL, Cussenot O. Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 2001; 92: 11301137.
- 32. Tsuchiya N, Wang L, Suzuki H, Segawa T, Fukuda H, Narita S, Shimbo M, Kamoto T, Mitsumori K, Ichikawa T et al. Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 2006; 24: 19821989.
- 33. dos Santos RM, de Jesus CM, Trindade Filho JC, Trindade JC, de Camargo JL, Rainho CA, Rogatto SR. PSA and androgenrelated gene (AR, CYP17, and CYP19) polymorphisms and the risk of adenocarcinoma at prostate biopsy. DNA Cell Biol 2008; 27: 497503.
- 34. Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L, Jacobsen SJ, Cerhan JR, Blute ML, Schaid DJ et al. Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16: 969978.
- 35. Makridakis N, Ross RK, Pike MC, Chang L, Stanczyk FZ, Kolonel LN, Shi CY, Yu MC, Henderson BE, Reichardt JK. A prevalent missense substitution that modulates activity of prostatic steroid 5α-reductase. Cancer Res 1997; 57: 1020 1022.
- 36. Loukola A, Chadha M, Penn SG, Rank D, Conti DV, Thompson D, Cicek M, Love B, Bivolarevic V, Yang Q et al. Comprehensive evaluation of the association between prostate cancer and genotypes/haplotypes in CYP17A1, CYP3A4, and SRD5A2. Eur J Hum Genet 2004; 12: 321332.
- 37. Cussenot O, Azzouzi AR, Nicolaiew N, Mangin P, Cormier L, Fournier G, Valeri A, Cancel-Tassin G. Low-activity V89L variant in SRD5A2 is associated with aggressive prostate cancer risk: an explanation for the adverse effects observed in chemoprevention trials using 5-alpha-reductase inhibitors. Eur Urol 2007; 52: 10821087.
- 38. Li Q, Zhu Y, He J, Wang M, Zhu M, Shi T, Qiu L, Ye D, Wei Q. Steroid 5-alpha-reductase type 2 (SRD5A2) V89L and A49T polymorphisms and sporadic prostate cancer risk: a metaanalysis. Mol Biol Rep 2013; 40: 35973608.
- 39. Rajender S, Vijayalakshmi K, Pooja S, Madhavi S, Paul SF, Vettriselvi V, Shroff S, Singh L, Thangaraj K. Longer (TA)n repeat but not A49T and V89L polymorphisms in SRD5A2 gene may confer prostate cancer risk in South Indian men. J Androl 2009; 30: 703710.