Investigation of the expression levels of CPEB4, APC, TRIP13, EIF2S3, EIF4A1, IFNg, PIK3CA and CTNNB1 genes in different stage colorectal tumors

Investigation of the expression levels of CPEB4, APC, TRIP13, EIF2S3, EIF4A1, IFNg, PIK3CA and CTNNB1 genes in different stage colorectal tumors

Background/aim: The aim of the study is to assess expression levels of CPEB4, APC, TRIP13, EIF2S3, EIF4A1, IFNg, PIK3CA and CTNNB1 genes in tumors and peripheral bloods of colorectal cancer patients in stages I–IV. Materials and methods: The mRNA levels of the genes were determined in tumor tissues and peripheral blood samples of 45 colorectal cancer patients and colon tissues and peripheral blood samples of 5 healthy individuals. Real-time polymerase chain reaction method was used for the analysis. Results: The mRNA level of the CPEB4 gene was significantly downregulated in colorectal tumor tissues and was upregulated in the peripheral blood of colorectal cancer patients relative to the controls (P < 0.05). APC mRNA level was significantly downregulated in tissues and upregulated in the peripheral blood (P < 0.05). TRIP13 mRNA level was upregulated in peripheral blood and also significantly upregulated in colorectal tumor tissues (P < 0.05). EIF2S3 mRNA level was upregulated in tissues and also significantly upregulated in peripheral blood (P < 0.05). PIK3CA mRNA level was downregulated in tissues and upregulated in peripheral blood. EIF4A1 mRNA level was downregulated in tissues and significantly upregulated in peripheral blood (P < 0.05). CTNNB1 mRNA level was downregulated in tissues and upregulated in peripheral blood. IFNg mRNA level was upregulated in both colorectal cancer tumor tissues and peripheral blood. Conclusion: TRIP13 and CPEB4 mRNA up regulation in the peripheral blood of patients with colorectal cancer may be a potential target for early stage diagnosis. In addition to this evaluation, although there is not much study on EIF2S3 and EIF4A1 mRNA changes in cases with colorectal cancer, upregulation in peripheral blood draws attention in our study. These data will shed light on the new comprehensive studies.Key words: Biomarker, colorectal tumor, different stage, gene expression

___

  • 1. Torre LA, Bray F, Siegel RL, Ferlay J, Tieulent JL et al. Global cancer statistics, 2012. CA: A Cancer Journal of Clinicians 2015; 65: 87-108. doi: 10.3322/caac.21262
  • 2. Lagerstedt K. Genetic analyses of tumor progression in colorectal cancer. Master thesis, University of Gothenburg, Gothenburg, Sweden, 2009.
  • 3. Kheirelseid EAH. Clinical applications of molecular profiling in colorectal cancer. PhD, National University of Ireland, Galway, Ireland, 2011.
  • 4. Akutekwe A, Şeker H and Yang S. In silico discovery of significant pathways in colorectal cancer metastasis using a two-stage optimization approach. The Institution of Engineering and Tecnology Systems Biology 2015; 9 (6): 294- 302. doi: 10.1049/iet-syb.2015.0031
  • 5. Friederichs J, Rosenberg R, Mages J, Janssen KP, Maeckl C et al. Gene expression profiles of different clinical stages of colorectal carcinoma: toward a molecular genetic understanding of tumor progression. International Journal of Colorectal Disease 2005; 20 (5): 391-402. doi: 10.1007/s00384-004-0722-1
  • 6. Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K et al. Alterations of gene expression during colorectal Carcino genesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Research 2001; 61 (9): 3544-3549.
  • 7. Kwon HC, Kim SH, Roh MS, Kim JS, Lee HS et al. Gene expression profiling in lymphnode-positive and lymphnodenegative colorectal cancer. Diseases of the Colon & Rectum 2004; 47 (2): 141-152. doi: 10.1007/s10350-003-0032-7
  • 8. Lee S, Bang S, Song K, Lee I. Differential expression in normaladenoma-carcinoma sequence suggests complex molecular carcinogenesis in colon. Oncology Reports 2006; 16 (4): 747- 754. doi: 10.3892/or.16.4.747
  • 9. Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC et al. Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene 2002; 21 (26): 4120-4128. doi: 10.1038/ sj.onc.1205518
  • 10. Zou TT, Selaru FM, Xu Y, Shustova V, Yin J et al. Application of cDNA microarray stogenerate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene 2002; 21 (31): 4855-4862. doi: 10.1038/ sj.onc.1205613
  • 11. Ortiz-Zapater E, Pineda D, Martinez-Bosch N, Miranda FG, Iglesias M et al. Key contribution of CPEB4-mediated translational control to cancer progression. Nature Medicine 2012; 18 (1): 83-90. doi: 10.1038/nm.2540
  • 12. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC human molecular genetics. Human Molecular Genetic 2001; 10 (7): 721-733. doi: 10.1093/hmg/10.7.721
  • 13. Vader G. Pch2(TRIP13): controlling cell division through regulation of HORMA domains. Chromosoma 2015; 124: 333- 339 doi: 10.1007/s00412-015-0516-y
  • 14. Banerjee R, Russo N, Liu M, Basrur V, Bellile E et al. TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nature Communication 2014; 5: 4527. doi: 10.1038/ncomms5527
  • 15. Tao Y, Yang G, Yang H, Song D, Hu Let al. TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiplemyeloma. Oncotarget 2017; 8: 26718- 26731. doi: 10.18632/oncotarget.14957
  • 16. Zhou K, Zhang W, Zhang Q, Gui R, Zhao H et al. Loss of thyroid hormone receptor interactor 13 inhibits cell proliferation and survival in human chronic lymphocytic leukemia. Oncotarget 2017; 8 (15): 25469-25481. doi: 10.18632/oncotarget.1603
  • 17. Sheng N, Yan L, Wu K, You W, Gong J et al. TRIP13 promotes tumor growth hand is associated with poor prognosis in colorectal cancer. Cell Death and Disease 2018; 9: 402. doi 10.1038/s41419-018-0434-z
  • 18. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H et al. Interleukins, from1 to 37, and interferon-γ: receptors, functions, and roles in diseases. Journal of Allergy Clinical Immunology 2011; 127: 701-721. doi: 10.1016/j.jaci.2010.11.050
  • 19. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews Cancer 2002; 2: 489-501. doi: 10.1038/nrc839
  • 20. Moortgat S, Desir J, Benoit V, Boulanger S, Pendeville H et al. Two novel EIF2S3 mutations associated with syndromic intellectual disability with severe microcephaly, growth retardation, and epilepsy. American Journal of Medical Genetics 2016; 170A: 2927-2933. doi: 10.1002/ajmg.a.37792
  • 21. Rogers GWJR, Komar AA, Merricke WC. IF4A: the godfather of the DEAD box helicases. Progress in Nucleic Acid Research and Molecular Biology 2002; 72: 307-331. doi: 10.1016/s0079- 6603(02)72073-4
  • 22. Pfaffl MW, Horgan GW, Dempfle L. Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 2002; 30 (9): e36. doi: 10.1093/ nar/30.9.e36
  • 23. Alexandra K. Analysis of genes with altered expression along colorectal tumor formation and and their regulatory processes. PhD, Semmelweis University, Budapest, Hungary, 2015.
  • 24. Xu H, Lıu B. CPEB4 is a candidate biomarker for defining metastatic cancers and directing personalized therapies. Medical Hypotheses 2013; 81 (5): 875-877. doi: 10.1016/j.mehy.2013.08.030
  • 25. Lu R, Zhou Z, Yu W, Xia Y, Zhi X. CPEB4 promotes cell migration and invasion via upregulating vimentin expression in breast cancer. Biochemical and Biophysical Research Communication 2017; 489 (2): 135-141. doi: 10.1016/j. bbrc.2017.05.112
  • 26. Zhijun L, Dapeng W, Hong J, Guicong W, Bingjian Y et al. Over expression of CPEB4 in glioma indicates a poor prognosis by promoting cell migration and invasion. Tumour Biology 2017; 39 (4). doi: 10.1177/1010428317694538
  • 27. Chian CF, Hwangy T, Terngh J, Lees C, Chaot Y et al. Panels of tumor-derived RNA markers in peripheral blood of patients with non-small cell lung cancer: their dependence on age, gender and clinical stages. Oncotarget 2016; 7 (31): 50582- 50595. doi: 10.18632/oncotarget.10558
  • 28. Zhong X, Xiao Y, Chen C, Wei X, Hu C et al. MicroRNA203-mediated post transcriptional deregulation of CPEB4 contributes to colorectal cancer progression. Biochemical and Biophysical Research Communications 2015; 466: 206-213. doi: 10.1016/j.bbrc.2015.09.008
  • 29. Huang W, Li H, Luo R. The microRNA-1246 promotes metastasis in non-small cell lung cancer by targeting cytoplasmic polyadenylation element-binding protein 4. Diagnostic Pathology 2015; 10:127. doi: 10.1186/s13000-015- 0366-1
  • 30. Tian Q, Liang L, Ding J, Zha R, Shi H et al. MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic poly adenylation element-binding protein 4 in hepato cellular carcinoma. PLoS One 2012; 7 (11): e48958. doi: 10.1371/ journal.pone.0048958
  • 31. Tsai LY, Chang YW, Lee MC, Chang YC, Hwang PI et al. Biphasic and stage-associated expression of CPEB4 in hepatocellular carcinoma. PLoS One 2016; 11 (5): e0155025. doi: 10.1371/journal.pone.0155025
  • 32. Wang HX, Qin R, Mao J, Huang QL, Hong F et al. CPEB4 regulates glioblastoma cell proliferation and predicts poor out come of patients. Clinical Neurology and Neurosurgery 2018; 169: 92-97. doi: 10.1016/j.clineuro.2018.04.008
  • 33. Hu WMM, Yang YMB, Xi SMM, Sai K, Su D et al. Expression of CPEB4 in human glioma and its correlations with prognosis. Medicine (Baltimore) 2015; 94 (27): e979. doi: 10.1097/ MD.0000000000000979
  • 34. He X, Lin X, Cai M, Fan D, Chen X et al. High expression of cytoplasmic polyadenylation element-binding protein 4 correlates with poor prognosis of patients with colorectal cancer. Virchows Archiv 2017; 470 (1): 37-45. doi: 10.1007/ s00428-016-2037-3
  • 35. Chang YT, Huang CS, Yao CT, Su SL, Terng HJ et al. Gene expression profile of peripheral blood in colorectal cancer. World Journal of Gastroenterology 2014; 20: 14463-14471. doi: 10.3748/wjg.v20.i39.14463
  • 36. Birnbaum DJ, Laibe S, Ferrari A, Lagarde A, Fabre AJ et al. Expression profiles in stage II colon cancer according to APC gene status. Translational Oncology 2012; 5 (2): 72-76. doi: 10.1593/tlo.11325
  • 37. Güler H. Kolorektal kanserlerde DCC onkogenlerin rolü. Yüksek Lisans Tezi. İnönü University. Malatya, Turkey, 2001.
  • 38. Baeg GH, Matsumine A, Kuroda T, Bhattacharjee RN, Miyashiro I et al. The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. The EMBO Journal 1995; 14 (22): 5618-5625.
  • 39. Heinen CD, Goss KH, Cornelius JR, Babcock GF, Knudsen ES et al. The APC tumor suppressor controls entry into S-phase through it sability to regulate the cyclin D/ RB pathway. Gastroenterology 2002; 123 (3): 751-763. doi: 10.1053/gast.2002.35382
  • 40. Akiyama T. Wnt/beta-catenin signalling. Cytokine Growth Factor Reviews 2000; 11 (4): 273-282. doi: 10.1016/s1359- 6101(00)00011-3
  • 41. Polakis P. The oncogenic activation of beta-catenin. Current Opinion in Genetic & Development 1999; 9 (1): 15-21. doi: 10.1016/S0959-437X(99)80003-3
  • 42. Munemitsu S, Albert I, Rubinfeld B, P Polakis. Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein. Molecular and Cellular Biology 1996; 16 (8): 4088-4094. doi: 10.1128/mcb.16.8.4088
  • 43. Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Research 1997; 57(20):4624-30.
  • 44. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality world wide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68: 394- 424. doi: 10.3322/caac.2149
  • 45. Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Research 2010; 70 (6): 2406-2414. doi: 10.1158/0008-5472.CAN-09-3929
  • 46. Brenner H, Bouvier AM, Foschi R, Hackl M, Larsen IK et al. Progress in colorectal cancer survival in Europe from the late 1980s to the early 21st century: the EUROCARE study. International Journal of Cancer 2012; 131 (7): 1649-1658. doi: 10.1002/ijc.26192
  • 47. Rao CV, Yamada HY, Yao Y, Dai W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 2009; 30: 1469-1474. doi: 10.1093/carcin/ bgp081
  • 48. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genetic 2006; 38: 1043-1048. doi: 10.1038/ng1861
  • 49. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the USA 2004; 101: 9309-9314. doi: 10.1073/ pnas.0401994101
  • 50. Kurita K, Maeda M, Mansour MA, Kokuryo T, Uehara K et al. TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncology Letters 2016; 12 (6): 5240-5246. doi: 10.3892/ol.2016.533
  • 51. Lu S, Qian J, Guo M, Gu C, Yang Y. Insights into a crucial role of TRIP13 in human cancer. Computational and Structural Biotechnology 2019; 17: 854-861. doi: 10.1016/j. csbj.2019.06.005
  • 52. Van Kester MS, Borg MK, Zoutman WH, Out-Luiting JJ, Jansen PM et al. A meta-analysis of gene expression data identifies a molecular signature characteristic for tumor-stage mycosis fungoides. Journal of İnvestigative Dermatology 2012; 132 (8): 2050-2059. doi: 10.1038/jid.2012.117
  • 53. Di Franco S, Alice T, Todaro M, Stassi G. Role of type I and II interferons in colorectal cancer and melanoma. Frontiers in Immunology 2017; 8: 878. doi: 10.3389/fimmu.2017.00878
  • 54. Campbell IG, Russell SE, Choong DYH, Montgomery KG, Ciavarella Ml et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Research 2004; 64: 7678-7681. doi: 10.1158/0008-5472.CAN-04-2933
  • 55. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304 (5670): 554. doi: 10.1126/science.1096502
  • 56. Cathomas G. PIK3CA in colorectal cancer. Frontiers in Oncology 2014; 4. doi: 10.3389/fonc.2014.00035
  • 57. Yan L, Xu F, Dai CL. Relationship between epithelialto-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research 2018; 37 (1): 203. doi: 10.1186/s13046-018-0887-z
  • 58. Huang L, Liu Z, Deng D, Tan A, Liao M et al. Anti-epidermal growth factor receptor monoclonal antibody-based therapy for metastatic colorectal cancer: a meta-analysis of the effect of PIK3CA mutations in KRAS wild-type patients. Archives of Medical Science 2014; 10: 1-9. doi: 10.5114/aoms.2014.40728
  • 59. Yang ZY, Wu XY, Huang YF, Di MY, Zheng DY et al. Promising biomarkers for predicting the outcomes of patients with KRAS wild-type metastatic colorectal cancer treated with antiepidermal growth factor receptor monoclonal antibodies: a systematic review with meta-analysis. International Journal of Cancer 2013; 133: 1914-1925. doi: 10.1002/ijc.28153
  • 60. VaklavasC, Blume SW, GrizzleWE. Translational dysregulation in cancer: molecular insights and potential clinical applications in biomarker development. Frontiers in Oncology 2017; 7: 158. doi: 10.3389/fonc.2017.00158
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Factors affecting mortality in geriatric patients hospitalized with COVID-19

Şermin BÖREKÇİ, Hakan YAVUZER, Alper DÖVENTAŞ, Günay CAN, Rabia BAĞ SOYTAŞ, Deniz SUNA ERDİNÇLER, Rıdvan KARAALİ, Veysel SUZAN, Mert Ahmet KUŞKUCU, Bora KORKMAZER, Damla ÜNAL, Pınar ARMAN, Tuğçe EMİROĞLU GEDİK

Clinical course of COVID-19 disease in immunosuppressed renal transplant patients

Selçuk YAYLACI, Yakup TOMAK, Mehmet KÖROĞLU, Ahmed Bilal GENÇ, Hamad DHEİR, Gürkan MURATDAĞI, Oğuz KARABAY, Esma Seda ÇETİN, Savaş SİPAHİ, Kezban ÖZMEN, Necattin FİRAT, Ömer Faruk ATEŞ

The necessity of treating asymptomatic bacteriuria with antibiotics in the perioperative period of joint arthroplasty: a metaanalysis.

Sayed Abdulla JAMI, Jiandang SHI, Zhanwen ZHOU, Changhao LIU

Sural nerve harvest for infants: integrated with information based on anatomical dissections

Mehmet Tuğrul YILMAZ, Mustafa BÜYÜKMUMCU, Anıl Didem AYDIN KABAKÇI, Duygu AKIN SAYGIN, Muzaffer ŞEKER

Consensus recommendations for botulinum toxin injections in the spasticity management of children with cerebral palsy during COVID-19 outbreak

Pınar AKPINAR, Ece ÜNLÜ AKYÜZ, Canan TIKIZ, Şehim KUTLAY, Birkan SONEL TUR, Nalan ÇAPAN, Sibel ÇAĞLAR, Murat ZİNNUROĞLU, Ebru YILMAZ YALÇINKAYA, Afitap İÇAĞASIOĞLU, Tuğçe ÖZEKLİ MISIRLIOĞLU, Süda TEKİN, Berrin HÜNER, Melek SEZGİN, Kadriye ÖNEŞ, Özden ÖZYEMİŞÇİ TAŞKIRAN, Demet OFLUOĞLU, Pınar AKPINAR

Gemcitabine, dexamethasone and cisplatin (GDP) is an effective and well-tolerated mobilization regimen for relapsed and refractory lymphoma: a single center experience

Semih BAŞCI, Fevzi ALTUNTAŞ, Bahar UNCU ULU, Mehmet Sinan DAL, Mehmet BAKIRTAŞ, Derya ŞAHİN, Tahir DARÇIN, Jale YILDIZ, Nuran Ahu BAYSAL, Dicle İSKENDER, Merih KIZIL ÇAKAR, Tuğçe Nur YİĞENOĞLU, Hikmettullah BATGİ, Alparslan MERDİN, Nurgül ÖZCAN, Ali KILINÇ

Frailty is associated with poor sleep quality in the oldest old

Muhammet Cemal KIZILARSLANOĞLU, Rana Tuna DOĞRUL, Olgun DENİZ, Süheyla ÇÖTELİ, Berna GÖKER, Çağatay ÇAVUŞOĞLU, Ali ÖNCÜL

The effect of measurement area size on the reliability of myocardial iron load measurement in cardiac magnetic resonance imaging examinations of thalassemia patients

İbrahim Önder YENİÇERİ, Funda Dinç ELİBOL, Fatih Mehmet AZIK

A comparison of rates and severity of chronic kidney disease in deceased-donor and living-donor liver transplant recipients: times matter

Koray S. ACARLI, Yücel YANKOL, Nesimi MECİT, Turan KANMAZ, Münci KALAYOĞLU, Emily BUGEAUD, Tiffany ZENS, Michael RIZZARI, Glen E. LEVERSON, David FOLEY, Joshua D. MEZRICH, Oya M. ANDAÇOĞLU, Anthony M. D’ALESSANDRO, Luis A. FERNANDEZ

Role of mir-33a, mir-203b, mir361-3p, and mir-424 in hepatocellular carcinoma

https://orcid.org/0000-0001-9453-4166, Esra GÜZEL TANOĞLU, Burhanettin YALÇINKAYA, Didem TAŞTEKİN