Impact of GGCX polymorphisms on warfarin dose requirements in atrial fibrillation patients

Impact of GGCX polymorphisms on warfarin dose requirements in atrial fibrillation patients

Background/aim: Warfarin is a common anticoagulant with large interindividual differences and a narrow therapeutic range. The polymorphisms of gamma-glutamyl carboxylase (GGCX) are important genetic factors for warfarin dose requirements. Materials and methods: Polymerase chain reaction and direct sequencing methods were used to detect the GGCX rs699664 genotype in 215 atrial fibrillation (AF) patients with warfarin administration. The effects on warfarin dose by different genotypes were analyzed. A warfarin dosing algorithm was developed based on age, height, CYP2C9, VKORC1, and GGCX genotype. Results: In 215 AF patients, there were 104 cases of wild-type GG genotype (48.4%), 92 cases of GA genotype (42.8%), and 19 cases of AA genotype (8.8%). Patients with the GGCX rs699664 A allele (GA or AA genotypes) needed higher warfarin doses than those with the GG genotype (P < 0.05). A warfarin dosing algorithm showed that age, height, CYP2C9, VKORC1, and GGCX genotype were the best variables for estimating warfarin dose (R2 = 41.2%). Another independent cohort of 60 AF patients showed a significant linear correlation between predicted warfarin maintenance dose and actual dose (R = 0.660, P < 0.01). Conclusion: AF patients with the GA and AA genotypes in GGCX rs699664 required significantly higher warfarin doses. GGCX rs699664 is a potential predictor for the warfarin dose of AF patients.

___

  • 1. Ferrari R, Bertini M, Blomstrom-Lundqvist C, Dobrev D, Kirchhof P, Pappone C, Ravens U, Tamargo J, Tavazzi L, Vicedomini GG. An update on atrial fibrillation in 2014: From pathophysiology to treatment. Int J Cardiol 2016; 203: 22-29.
  • 2. Anumonwo JM, Kalifa J. Risk factors and genetics of atrial fibrillation. Heart Fail Clin 2016; 12: 157-166.
  • 3. Ziaei F, Zaman M, Rasoul D, Gorantla RS, Bhayani R, Shakir S, Shan SK, Khan J, Uppal H, Chandran S et al. The prevalence of atrial fibrillation amongst heart failure patients increases with age. Int J Cardiol 2016; 214: 410-411.
  • 4. Zhao LQ, Liu SW. Atrial fibrillation in essential hypertension: an issue of concern. J Cardiovasc Med (Hagerstown) 2014; 15: 100-106.
  • 5. Senoo K, Lane D, Lip GY. Stroke and bleeding risk in atrial fibrillation. Korean Circ J 2014; 44: 281-290.
  • 6. Lip GY, Lane DA. Stroke prevention in atrial fibrillation: a systematic review. JAMA 2015; 313: 1950-1962.
  • 7. Oldenburg J, Bevans CG, Fregin A, Geisen C, Müller-Reible C, Watzka M. Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles. Thromb Haemost 2007; 98: 570-578.
  • 8. Lee A, Crowther M. Practical issues with vitamin K antagonists: elevated INRs, low time-in-therapeutic range, and warfarin failure. J Thromb Thrombolysis 2011; 31: 249-258.
  • 9. Kamali F, Khan TI, King BP, Frearson R, Kesteven P, Wood P, Daly AK, Wynne H. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 2004; 75: 204-212.
  • 10. Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001; 119: 8S-21S.
  • 11. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40: 587-603.
  • 12. Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements--a systematic review and meta-analysis. Eur J Clin Pharmacol 2009; 65: 365-375.
  • 13. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, Gaston KL, Waddell CD, Chirico MJ, Johnson JA. Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther 2006; 79: 291-302.
  • 14. Ekladious SM, Issac MS, El-Atty Sharaf SA, Abou-Youssef HS. Validation of a proposed warfarin dosing algorithm based on the genetic make-up of Egyptian patients. Mol Diagn Ther 2013; 17: 381-390.
  • 15. Li X, Liu R, Luo ZY, Yan H, Huang WH, Yin JY, Mao XY, Chen XP, Liu ZQ, Zhou HH et al. Comparison of the predictive abilities of pharmacogenetics-based warfarin dosing algorithms using seven mathematical models in Chinese patients. Pharmacogenomics 2015; 16: 583-590.
  • 16. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, Robinson M, Barton S, Brunisholz K, Mower CP et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 2012; 125: 1997-2005.
  • 17. Rost S, Fregin A, Koch D, Compes M, Muller CR, Oldenburg J. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004; 126: 546-549.
  • 18. Chen LY, Eriksson N, Gwilliam R, Bentley D, Deloukas P, Wadelius M. Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing. Blood 2005; 106: 3673- 3674.
  • 19. Shikata E, Ieiri I, Ishiguro S, Aono H, Inoue K, Koide T, Ohgi S, Otsubo K. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103: 2630-2635.
  • 20. King CR, Deych E, Milligan P, Eby C, Lenzini P, Grice G, Porche-Sorbet RM, Ridker PM, Gage BF. Gamma-glutamyl carboxylase and its influence on warfarin dose. Thromb Haemost 2010; 104: 750-754.
  • 21. Wu SM, Stanley TB, Mutucumarana VP, Stafford DW. Characterization of the gamma-glutamyl carboxylase. Thromb Haemost 1997; 78: 599-604.
  • 22. Furie BC, Furie B. Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies. Thromb Haemost 1997; 78: 595-598.
  • 23. Gage BF, Eby CS. The genetics of vitamin K antagonists. Pharmacogenomics J 2004; 4: 224-225.
  • 24. Rost S, Fregin A, Koch D, Compes M, Müller CR, Oldenburg J. Compound heterozygous mutations in the gamma-glutamyl carboxylasegene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004; 126: 546-549.
  • 25. Zhu A, Sun H, Raymond RM Jr, Furie BC, Furie B, Bronstein M, Kaufman RJ, Westrick R, Ginsburg D. Fatal hemorrhage in mice lacking gamma-glutamyl carboxylase. Blood 2007; 109: 5270-5275.
  • 26. Vanakker OM, Martin L, Gheduzzi D, Leroy BP, Loeys BL, Guerci VI, Matthys D, Terry SF, Coucke PJ, Pasquali-Ronchetti I et al. Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J Invest Dermatol 2007; 127: 581-587.
  • 27. Kuo WL, Stafford DW, Cruces J, Gray J, Solera J. Chromosomal localization of the gamma-glutamyl carboxylase gene at 2p12. Genomics 1995; 25: 746-748.
  • 28. Wu SM, Stafford DW, Frazier LD, Fu YY, High KA, Chu K, Sanchez-Vega B, Solera J. Genomic sequence and transcription start site for the human gamma-glutamyl carboxylase. Blood 1997; 89: 4058-4062.
  • 29. Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007; 5: 2227-2234.
  • 30. Huang SW, Xiang DK, Huang L, Chen BL, An BQ, Li GF, Luo ZY. Influence of GGCX genotype on warfarin dose requirements in Chinese patients. Thromb Res 2011; 127: 131- 134.
  • 31. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, Wadelius C, Bentley D et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5: 262-270.
  • 32. Cavallari LH, Perera M, Wadelius M, Deloukas P, Taube G, Patel SR, Aquino-Michaels K, Viana MA, Shapiro NL, Nutescu EA. Association of the GGCX (CAA)16/17 repeat polymorphism with higher warfarin dose requirements in African Americans. Pharmacogenet Genomics 2012; 22: 152-158.
  • 33. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120: 181-186.
  • 34. Liang Y, Chen Z, Guo G, Dong X, Wu C, Li H, Wang T, Xu B. Association of genetic polymorphisms with warfarin dose requirements in Chinese patients. Genet Test Mol Biomarkers 2013; 17: 932-936.
  • 35. Wang B, Wang J, Huang SQ, Su HH, Zhou SF. Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr Drug Metab 2009; 10: 781-834.
  • 36. Jiang NX, Ge JW, Xian YQ, Huang SY, Li YS. Clinical application of a new warfarin-dosing regimen based on the CYP2C9 and VKORC1 genotypes in atrial fibrillation patients. Biomed Rep 2016; 4: 453-458.
  • 37. Wallin R, Wajih N, Hutson SM. VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors. Vitam Horm 2008; 78: 227-246.
  • 38. Oldenburg J, Watzka M, Rost S, Müller CR. VKORC1: molecular target of coumarins. J Thromb Haemost 2007; 5 (Suppl. 1): 1-6.
  • 39. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537-541.
  • 40. Harrington DJ, Gorska R, Wheeler R, Davidson S, Murden S, Morse C, Shearer MJ, Mumford AD. Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 2008; 6: 1663-1670.
  • 41. Li S, Zou Y, Wang X, Huang X, Sun Y, Wang Y, Dong L, Jiang H. Warfarin dosage response related pharmacogenetics in Chinese population. PLoS One 2015; 10: e0116463.
  • 42. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005; 106: 2329-2333.
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Relation between foot pain and plantar pressure in pregnancy

Tuncay VAROL, Serkan ÖZGÜR, Enis CEZAYİRLİ, Aslı GÖKER, Ayşe TUÇ YÜCEL

EMRE OCAK, SÜHA BETON, Vedat TAŞ, CEM MEÇO

Gülhan AKBABA, DİLEK BERKER, Serhat IŞIK, Narin Nasiroğlu İMGA, Ferit Kerim KÜÇÜKLER, Yasemin TÜTÜNCÜ, Serdar GÜLER

A prospective follow-up of quality of life, depression, and anxiety in children with lymphoma and solid tumors

Metin DEMİRKAYA, Ayşe Pınar VURAL, Candan DEMİRÖZ, Betül Berrin SEVİNİR, Salih GÜLER, Nihal SARGIN YILDIRIM, Arzu ÇIRPAN KANTARCIOĞLU

Relationship between selected micronutrient deficiencies and oxidative stress biomarkers in diabetes mellitus patients with foot ulcers in Ibadan, Nigeria

Elizabeth Bosede BOLAJOKO, Olubayo Michael AKINOSUN, John ANETOR, Kensese Sontin MOSSANDA

Zhenhe LI, Guixia WANG, Guodong ZHEN, Yuliang ZHANG, Jiaqiang LIU, Shanmei LIU

HÜSEYİN ÖZKARAKAŞ, İşil KÖSE, ÇİLER ZİNCİRCİOĞLU, Sibel ERSAN, Gürsel ERSAN, NİMET ŞENOĞLU, Şükran KÖSE, RIZA HAKAN ERBAY

Plasma human leukocyte antigen-G (HLA-G) in patients with thyroid cancer

Aydın YAVUZ, Kürşat DİKMEN, Hasan BOSTANCI, Murat AKIN, Harun KARABACAK, Latife Arzu ARAL

Mehmet CEYHAN, İnci YILDIRIM, Hasan TEZER, İlker DEVRİM, Emmanuel FEROLDI

Decreased oxidative stress may contribute to the disease process in placenta accreta

Özcan EREL, Ali Turhan ÇAĞLAR, Aykan YÜCEL, Sibel ÖZLER, Merve ERGİN, Nuri DANIŞMAN, Dilek UYGUR, Efser ÖZTAŞ, Başak GÜMÜŞ GÜLER