Determination of genotypic varieties and genotyping of multiple drug-resistant tuberculosis by the RFLP and spoligotyping methods

Determination of genotypic varieties and genotyping of multiple drug-resistant tuberculosis by the RFLP and spoligotyping methods

Background/aim: The purpose of the present study was to determine the distribution and epidemiological features of mycobacteria with molecular methods. Materials and methods: Fifty-five culture-positive samples were analyzed by polymerase chain reaction-restriction enzyme length polymorphism (PCR-RFLP) at species level, and their molecular typing was performed with spoligotyping. The IS6110 region and the locus of gene coding for Hsp65 were amplified. RFLP profiles were obtained by cutting the Hsp65 region with the Hae III and BstE II (Eco91I) enzymes. Spoligotyping was carried out by commercial kit. The H37Rv strain was used as the control. Results: All samples showed the same cutting pattern with the H37Rv strain. The RFLP profiles of 9 strains identified as mycobacteria other than tuberculosis were compatible with the M. tuberculosis complex. Spoligotyping of 55 isolates detected 13 different genetic profiles. The Beijing genotype was not detected. One isolate was described as an orphan strain according to the SpolDB4 database. The most frequently detected family was T1 with 32 strains (64%), followed by 9 isolates (18%) belonging to the LAM7 TUR family. Conclusion: PCR-RFLP is a specific, rapid, and effective method in routine diagnosis of mycobacteria. Spoligotyping is an ideal method in the determination of genotypic varieties of mycobacteria.

___

  • 1. Sürücüoğlu S. Tüberküloz basillerinin identifikasyonu. III. Tüberküloz sempozyumu ve III. Tüberküloz laboratuvar tanı yöntemleri uygulama kursu, Adana. Kurs kitabı; 2004. pp. 30- 43 (in Turkish).
  • 2. Mokaddas E, Ahmad S. Development and evaluation of a multiplex PCR for rapid detection and differentiation of Mycobacterium tuberculosis complex members from nontuberculous mycobacteria. Jpn J Infect Dis 2007; 60: 140-144.
  • 3. Maurya AK, Kant S, Nag VL, Kushwaha RA, Kumar M, Dhole TN. Comparative evaluation of IS6110 PCR via conventional methods in rapid diagnosis of new and previously treated cases of extrapulmonary tuberculosis. Tuberk Toraks 2011; 59: 213- 220.
  • 4. Fletcher HA. Molecular epidemiology of tuberculosis: recent developments and applications. Curr Opin Pulm Med 2001; 7: 154-159.
  • 5. Durmaz R. Nükleik asit amplifikasyon yöntemlerinde sorunlar ve standardizasyon. Uygulamalı Moleküler Mikrobiyoloji. Durmaz R (Eds.) 2. Baskı. Kozan Ofset, Ankara, Turkey; 2001. pp. 45-56 (in Turkish).
  • 6. Durmaz R, Gunal S, Yang Z, Ozerol IH, Cave MD. Molecular epidemiology of tuberculosis in Turkey. Clin Microbiol Infec 2003; 9: 873-877.
  • 7. Alonso Rodriguez N, Chaves F, Inigo J, Bouza E, Garcia de Viedma D; TB Molecular Epidemiology Study Group of Madrid, Andres S, Cias R, Daza R, Domingo D et al. Transmission permeability of tuberculosis involving immigrants, revealed by a multicentre analysis of clusters. Clin Microbiol Infec 2009; 15: 435-442.
  • 8. Saniç A. Mikobakterilerin tanısında moleküler yöntemler ve standardizasyon. KLİMİK 2003 XI. Türk Klinik Mikrobiyoloji Ve İnfeksiyon Hastalıkları Kongresi. 2003: 159-161 (in Turkish).
  • 9. Plikaytis BB, Plikaytis BD, Yakrus MA, Butler R, Woodley CL, Silcox VA, Shinnick TM. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol 1992; 30: 1815-1822.
  • 10. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 1993; 31: 175-178.
  • 11. Hermans PW, van Soolingen D, Bik EM, de Haas PE, Dale JW, van Embden JD. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 1991; 59: 2695-2705.
  • 12. Walsh PS, Metzger DA, Higuchi R. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991; 10: 506-513.
  • 13. Steingrube VA, Gibson JL, Brown BA, Zhang Y, Wilson RW, Rajagopalan M, Wallace RJ Jr. PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J Clin Microbiol 1995; 33: 149-153.
  • 14. Taylor TB, Patterson C, Hale Y, Safranek WW. Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media. J Clin Microbiol 1997; 35: 79-85.
  • 15. SPOLDB4, Sorted By Increasing Spoligo–International-Type Number. Web site: http://www.pasteur-guadeloupe.fr/tb/ spoldb3/spoldb3bin.pdf.
  • 16. Cousins DV, Bastida R, Cataldi A, Quse V, Redrobe S, Dow S, Duignan P, Murray A, Dupont C, Ahmed N et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol 2003; 53: 1305-1314.
  • 17. World Health Organization, 2010/2011 Tuberculosis, Global Facts. WHO web site. http://www.who.int/tb/ publications/2010/factsheet_tb_2010_rev21feb11.pdf.
  • 18. Türkiye Cumhuriyeti Sağlık Bakanlığı, Türkiye Halk Sağlığı Kurumu Web Sitesi: http://www.thsk.saglik.gov.tr/tuberkulozverem-hastaligi (in Turkish).
  • 19. Abe C. Standardization of laboratory tests for tuberculosis and their proficiency testing. Kekkaku 2003; 78: 541-551.
  • 20. Siddiqi S. Procedures for identification from culture; BACTEC NAP Test. In: Isenberg HD, editor. Clinical Microbiology Procedure Handbook. Washington DC, USA: American Society for Microbiology; 2004. pp. 7.6.3.1-7.6.3.3.
  • 21. Devallois, A, Picardeau M, Goh KS, Sola C, Vincent V, Rastogi N. Comparative evaluation of PCR and commercial DNA probes for detection and identification to species level of Mycobacterium avium and Mycobacterium intracellulare. J Clin Microbiol 1996; 34: 2756-2759.
  • 22. Brunello F, Ligozzi M, Cristelli E, Bonora S, Tortoli E, Fontana R. Identification of 54 Mycobacterial species by PCRRestriction Fragment Length Polymorphism analysis of the hsp65 gene. J Clin Microbiol 2001; 39: 2799-2806.
  • 23. Yoshida S, Saito H, Suzuki K. Present status of studies on epidemiology and molecular epidemiology of Mycobacterium kansasii, in special reference to its molecular epidemiology. Kekkaku 2011; 86: 681-684.
  • 24. Sambrook J, Russell DW. Molecular Cloning–A Laboratory Manual. 3rd ed. New York, NY, USA: CSHL Press; 2001.
  • 25. Bahrmand AR, Bakayeva TG, Bakayev VV. Use of restriction enzyme analysis of amplified DNA coding for the hsp65 gene and polymerase chain reaction with universal primer for rapid differentiation of Mycobacterium species in the clinical laboratory. Scand J Infect Dis 1998; 30: 477-480.
  • 26. Varma-Basil M, Pathak R, Singh K, Dwivedi SKD, Garima K, Kumar S, Sharma D, Dhiman B, Bose M. Direct early identification of Mycobacterium tuberculosis by PCRRestriction Fragment Length Polymorphism analysis from clinical samples. Jpn J Infect Dis 2010; 63: 55-57.
  • 27. Driscoll JR. Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol Biol 2009; 551: 117-128.
  • 28. Günal S. Türkiye’nin farklı coğrafik bölgelerinden toplanan Mycobacterıum tuberculosıs izolatlarının Is6110 RFLP ve Spoligotip profillerinin belirlenmesi. Doktora Tezi, İnönü Üniversitesi, Malatya, 2007 (in Turkish).
  • 29. Otkun M, Tansel Ö, Akata F, Otkun MT. Çoğul dirençli Mycobacterium tuberculosis izolatlarında sekonder ilaçlara direnç ve epidemiyolojik takip, TÜBİTAK Destekli Projeler Veri Tabanı 2003-62 (in Turkish).
  • 30. Augustynowicz-Kopec E, Jagielski T, Zwolska Z. Genetic diversity of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Poland and assessed by spoligotyping. J Clın Microbiol 2008; 46: 4041-4044.
  • 31. Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 2001; 7: 390- 396.
  • 32. Gori A, Bandera A, Marchetti G, Esposti AD, Catozzi L, Nardi GP, Gazzola L, Ferrario G, van Embden JDA, van Soolingen D et al. Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis 2005; 11: 1242-1248.
  • 33. Valcheva V, Mokrousov I, Narvkaya O, Rastogi N, Markova N. Utility of new 24locus variable-number tandem repeat typing for discriminating Mycobacterium tuberculosis clinical isolates collected in Bulgaria. J Clin Microbiol 2008; 46: 3005-3011.
  • 34. Baranov AA,  Mariandyshev AO, Mannsaker T, Dahle UR, Bjune GA. Molecular epidemiology and  drug resistance  of widespread genotypes of   Mycobacterium tuberculosis  in northwestern Russia. Int J Tuberc Lung D 2009; 13: 1288-1293.
  • 35. Velayati AA, Farnia P, Mırsaeidi M, Reza MM. The most prevalent Mycobacterium tuberculosis superfamilies among Iranian and Afghan TB cases. Scand J Infect Dis 2006; 38: 463- 468.
  • 36. Bulut Y, Yenişehirli G, Otlu B, Seyfikli Z, Çelikel S, Yılmaz A, İnönü H. Primary drug resistance and molecular epidemiology of the Mycobacterium tuberculosis strains isolated in the Kelkit Valley. Turk J Med Sci 2009; 39: 101-107.
  • 37. Oral Zeytinli Ü, Köksal F. Genotyping of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in Cukurova region, Turkey by spoligotyping and MIRU-VNTR methods. Mikrobiyol Bul 2012; 46: 202-210 (article in Turkish with an abstract in English).
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK