Current community transmission and future perspectives on the COVID-19 process

Current community transmission and future perspectives on the COVID-19 process

Background/aim: COVID-19 syndrome due to the SARS-CoV-2 virus is a currently challenging situation ongoing worldwide. Since the current pandemic of the SARS-CoV-2 virus is a great concern for everybody in the World, the frequently asked question is how and when the COVID-19 process will be concluded. The aim of this paper is to propose hypotheses in order to answer this essential question. As recently demonstrated, SARS-CoV-2 RNAs can be reverse-transcribed and integrated into the human genome. Our main hypothesis is that the ultimate aim of the SARS-CoV-2 virus is the incorporation to human genome and being an element of the intestinal virobiota. Materials and methods: We propose that the SARS-CoV-2 genomic incorporation to be a part of human virobiota is essentially based on three pathobiological phases which are called as the ‘induction’, ‘consolidation’, and ‘maintenance phases’. The phase of ‘recurrence’ complicates any of these three disease phases based on the viral load, exposure time, and more contagious strains and/or mutants. We have performed the ‘random walk model’ in order to predict the community transmission kinetics of the virus. Results: Chimerism-mediated immunotherapy at the individual and community level with the help of vaccination seems to be the only option for ending the COVID-19 process. After the integration of SARS-CoV-2 virus into the human genome via the induction, consolidation, and maintenance phases as an element of intestinal virobiota, the chimerism would be concluded. The ‘viral load’, the ‘genomic strain of the SARS-CoV-2’, and ‘host immune reaction against the SARS-CoV-2’ are the hallmarks of this long journey. Conclusion: Elucidation of the functional viral dynamics will be helpful for disease management at the individual- and communitybased long-term management strategies.Key words: SARS-CoV-2, COVID-19, virobiota, genomic integration

___

  • 1. Turk C, Turk S, Temirci ES, Malkan UY, Haznedaroglu İ C. In vitro analysis of the renin-angiotensin system and inflammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coronavirus. Journal of the Renin Angiotensin Aldosterone System 2020; 21 (2): 1470320320928872. doi: 10.1177/1470320320928872
  • 2. Ciftciler R, Ciftciler AE, Haznedaroglu IC. Local bone marrow renin-angiotensin system and COVID-19. International Journal of Hematology and Oncology 2020; 30 (1): 001-008. doi: 10.4999/uhod.204171
  • 3. Haznedaroglu IC, Beyazit Y. Local bone marrow renin–angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clinical Science 2013; 124 (5): 307-323. doi: 10.1042/ CS20120300.
  • 4. Göbölös L, Rácz I, Hogan M, Remsey-Semmelweis E, Atallah B et al. The role of renin-angiotensin system activated phagocytes in the SARS-CoV-2 coronavirus infection. Journal of Vascular Surgery 2020. doi: 10.1016/j.jvs.2020.12.056
  • 5. Turk C, Turk S, Malkan UY, Haznedaroglu IC. Three critical clinicobiological phases of the human SARS-associated coronavirus infections. European Review for Medical and Pharmacological Sciences 2020; 24 (16): 8606-8620. doi: 10.26355/ eurrev_202008_22660
  • 6. Acar AC, Er AG, Burduroğlu HC, Sülkü SN, Aydin Son Y et al. Projecting the course of COVID-19 in Turkey: a probabilistic modeling approach. Turkish Journal of Medical Sciences 2020. doi: 10.3906/sag-2005-378
  • 7. Wang S, Pan Y, Wang Q, Miao H, Brown AN et al. Modeling the viral dynamics of SARS-CoV-2 infection. Mathematical Biosciences 2020; 328 108438. doi: 10.1016/j.mbs.2020.108438
  • 8. Zhang L, Richards A, Khalil A, Wogram E, Ma H et al. SARSCoV-2 RNA reverse-transcribed and integrated into the human genome. BioRxiv 2020. doi: 10.1101/2020.12.12.422516
  • 9. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S et al. Evolution of Antibody Immunity to SARS-CoV-2. BioRxiv 2020;2020.2011.2003.367391. doi: 10.1101/2020.11.03.367391
  • 10. Xiao F, Tang M, Zheng X, Liu Y, Li X et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020; 158 (6): 1831-1833. e1833. doi: 10.1053/j.gastro.2020.02.055
  • 11. Pistello M, Antonelli G. Integration of the viral genome into the host cell genome: a double-edged sword. Clinical Microbiology and Infection 2016; 22 (4): 296-298. doi: 10.1016/j. cmi.2016.01.022
  • 12. Hua X, Vijay R, Channappanavar R, Athmer J, Meyerholz DK et al. Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. JCI Insight 2018; 3 (11): e99025. doi: 10.1172/jci.insight.99025
  • 13. Jiang C, Lian X, Gao C, Sun X, Einkauf KB et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature 2020; 585 (7824): 261-267. doi: 10.1038/s41586-020- 2651-8
  • 14. Moderbacher CR, Ramirez SI, Dan JM, Grifoni A, Hastie KM et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020. doi: 10.1016/j.cell.2020.09.038
  • 15. Pizzolla A, Nguyen THO, Smith JM, Brooks AG, Kedzierska K et al. Resident memory CD8+T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Science Immunology 2017; 2 (12): eaam6970. doi: 10.1126/sciimmunol. aam6970
  • 16. Zuo T, Liu Q, Zhang F, Lui GC, Tso EY et al. Depicting SARSCoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2020. doi: 10.1136/gutjnl-2020-322294
  • 17. Zhang L, Jackson CB, Mou H, Ojha A, Peng H et al. SARSCoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications 2020; 11 (1): 1-9. doi: 10.1038/s41467-020-19808-4
  • 18. Wang M, Li M, Ren R, Brave A, van der Werf S et al. International expansion of a novel SARS-CoV-2 mutant. MedRxiv 2020. doi: 10.1128/JVI.00567-20
  • 19. Wang D, Hu B, Hu C, Zhu F, Liu X et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. Jama 2020; 323 (11): 1061-1069. doi: 10.1001/jama.2020.1585
  • 20. Zhang Y, Xiao M, Zhang S, Xia P, Cao W et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. The New England Journal of Medicine 2020; 382 (17): e38. doi: 10.1056/NEJMc2007575
  • 21. Ng JJ, Luo Y, Phua K, Choong A. Acute kidney injury in hospitalized patients with coronavirus disease 2019 (COVID-19): a meta-analysis. Journal of Infection 2020. doi: 10.1016/j. jinf.2020.05.009
  • 22. Galván Casas C, Català A, Carretero Hernández G, RodríguezJiménez P, Fernández-Nieto D et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. British Journal of Dermatology 2020; 183 (1): 71-77. doi: 10.1111/ bjd.19163
  • 23. Colavita F, Lapa D, Carletti F, Lalle E, Bordi L et al. SARSCoV-2 isolation from ocular secretions of a patient with COVID-19 in Italy with prolonged viral RNA detection. Annals of Internal Medicine 2020; 173 (3): 242-243. doi: 10.7326/m20- 1176
  • 24. Ji D, Qin E, Xu J, Zhang D, Cheng G et al. Non-alcoholic fatty liver diseases in patients with COVID-19: a retrospective study. Journal of Hepatology 2020; 73 (2): 451-453. doi: 10.1016/j. jhep.2020.03.044
  • 25. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN et al. Multiorgan and renal tropism of SARS-CoV-2. The New England Journal of Medicine 2020; 383 (6): 590-592. doi: 10.1056/NEJMc2011400
  • 26. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clinical Infectious Diseases 2020. doi: 10.1093/cid/ciaa530
  • 27. Luganini A, Gribaudo G. Retroviruses of the human virobiota: the recycling of viral genes and the resulting advantages for human hosts during evolution. Frontiers in Microbiology 2020; 11 1140. doi: 10.3389/fmicb.2020.01140
  • 28. Pradeu T. Mutualistic viruses and the heteronomy of life. Studies in History and Philosophy of Biological and Biomedical Sciences 2016; 59 80-88. doi: 10.1016/j.shpsc.2016.02.007
  • 29. Virgin HW. The virome in mammalian physiology and disease. Cell 2014; 157 (1): 142-150. doi: 10.1016/j.cell.2014.02.032
  • 30. Tough RH, McLaren PJ. Interaction of the host and viral genome and their influence on HIV disease. Frontiers in Genetics 2018; 9 720. doi: 10.3389/fgene.2018.00720
  • 31. Houldcroft CJ, Beale MA, Breuer J. Clinical and biological insights from viral genome sequencing. Nature Reviews Microbiology 2017; 15 (3): 183-192. doi: 10.1038/nrmicro.2016.182
  • 32. Anand KB, Karade S, Sen S, Gupta RM. SARS-CoV-2: Camazotz’s curse. Medical Journal of Armed Forces India 2020; 76 (2): 136-141. doi: 10.1016/j.mjafi.2020.04.008
  • 33. Astuti I, Ysrafil. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetology & Metabolic Syndrome 2020; 14 (4): 407-412. doi: 10.1016/j.dsx.2020.04.020
  • 34. Gandhi M, Rutherford GW. Facial masking for Covid-19 - potential for ‘variolation’ as we await a vaccine. The New England Journal of Medicine 2020. doi: 10.1056/NEJMp2026913
  • 35. ÇiftÇiler R, Haznedaroğlu İC, Tufan A, Öztürk MA. COVID 19 scientific publications froM TURKEY. Turkish Journal of Medical Sciences 2020. doi: 10.3906/sag-2010-261
  • 36. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN et al. SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 (5): 1016-1035.e1019. doi: 10.1016/j.cell.2020.04.035
  • 37. Tan AT, Linster M, Tan CW, Le Bert N, Chia WN et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports 2021; 34 (6): 108728. doi: 10.1016/j.celrep.2021.108728
  • 38. Park A, Iwasaki A. Type I and Type III Interferons - Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host & Microbe 2020; 27 (6): 870-878. doi: 10.1016/j. chom.2020.05.008
  • 39. Duncan CJ, Mohamad SM, Young DF, Skelton AJ, Leahy TR et al. Human IFNAR2 deficiency: lessons for antiviral immunity. Science Translational Medicine 2015; 7 (307): 307ra154. doi: 10.1126/scitranslmed.aac4227
  • 40. Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T et al. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. Journal of Virology 2010; 84 (11): 5670-5677. doi: 10.1128/jvi.00272- 10
  • 41. Prokunina-Olsson L, Alphonse N, Dickenson RE, Durbin JE, Glenn JS et al. COVID-19 and emerging viral infections: the case for interferon lambda. The Journal of Experimental Medicine 2020; 217 (5). doi: 10.1084/jem.20200653
  • 42. Egli A, Santer DM, O’Shea D, Tyrrell DL, Houghton M. The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerging Microbes & Infections 2014; 3 (7): e51. doi: 10.1038/emi.2014.51
  • 43. V’kovski P, Gultom M, Steiner S, Kelly J, Russeil J et al. Disparate temperature-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. BioRxiv 2020;2020.2004.2027.062315. doi: 10.1101/2020.04.27.062315
  • 44. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nature Reviews Immunology 2014; 14 (1): 36-49. doi: 10.1038/nri3581
  • 45. Devasthanam AS. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence 2014; 5 (2): 270-277. doi: 10.4161/viru.27902
  • 46. Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: Friend or foe? Life Sciences 2020; 256 117900. doi: 10.1016/j.lfs.2020.117900
  • 47. Britton GJ, Chen-Liaw A, Cossarini F, Livanos AE, Spindler MP et al. SARS-CoV-2-specific IgA and limited inflammatory cytokines are present in the stool of select patients with acute COVID-19. MedRxiv 2020. doi: 10.1101/2020.09.03.20183947
  • 48. Aguas R, Corder RM, King JG, Goncalves G, Ferreira MU et al. Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics. MedRxiv 2020. doi:
  • 49. Young BE, Fong SW, Chan YH, Mak TM, Ang LW et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet 2020; 396 (10251): 603-611. doi: 10.1016/ s0140-6736(20)31757-8
  • 50. Rice AM, Morales AC, Ho AT, Mordstein C, Mühlhausen S et al. Evidence for strong mutation bias towards, and selection against, U content in SARS-CoV-2: implications for vaccine design. Molecular Biology and Evolution 2020. doi: 10.1093/ molbev/msaa188
  • 51. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395 (10234): 1417-1418. doi: 10.1016/s0140- 6736(20)30937-5
  • 52. Heaton PM. The Covid-19 vaccine-development multiverse. The New England Journal of Medicine 2020. doi: 10.1056/ NEJMe2025111
  • 53. Bloom BR, Nowak GJ, Orenstein W. ‘When Will We Have a Vaccine?’ - Understanding Questions and Answers about Covid-19 Vaccination. The New England Journal of Medicine 2020. doi: 10.1056/NEJMp2025331
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

How safe are children with COVID-19 from cardiac risks? Pediatric risk assesment; insights from echocardiography and electrocardiography

Berna Şaylan ÇEVİK, Eda KEPENEKLİ, Şule ARICI, Nurhayat YAKUT, Zeynep ERGENÇ, Özge GÜNAL

Effect of nondipper hypertension on coronary artery disease progression in patients with chronic coronary syndrome

Nihat KALAY, Deniz ELÇİK, Şaban KELEŞOĞLU, Zeki ÇETİNKAYA, Sibel BOYLU, Rıdvan YURT, Ali DOĞAN, Mehmet Tuğrul İNANÇ, Mustafa DURAN

Evaluation of ambulance calls for patients over 65 years of age in İzmir, Turkey: a twoyear retrospective analysis

Başak BAYRAM, Erkan GÜVENÇ, Ahu PAKDEMİRLİ

The effects of water immersion and epidural analgesia on cellular immune response, neuroendocrine, and oxidative markers

Tuba ÇANDAR, Nezaket KADIOĞLU, Yaprak ENGİN ÜSTÜN, Ümit Yasemin SERT, Özlem UZUNLAR

Tocilizumab and COVID-19: a meta-analysis of 2120 patients with severe disease and implications for clinical trial methodologies

Zouina SARFRAZ, Azza SARFRAZ, Muzna SARFRAZ, Hinna AFTAB, Zainab PERVAIZ

The study of sirtuins in breast cancer patients before and after radiotherapy

Eser KILIÇ, Oğuz Galip YILDIZ, Hatice SARAÇOĞLU, Nazlı HELVACI

The effect of testosterone replacement therapy on bladder functions, histology, apoptosis, and Rho-kinase expression in bladder outlet obstruction and hypogonadism rat model

Rukiye Nalan TİFTİK, Kansu BÜYÜKAFŞAR, Murat BOZLU, Selahittin ÇAYAN, Rabia BOZDOĞAN ARPACI, Barış SAYLAM, Ozan EFESOY, Mesut TEK

Point-of-care ultrasound assessment of the inferior vena cava distensibility index in mechanically ventilated children in the operating room

Faruk EKİNCİ, Ahmet YÖNTEM, Nagehan ASLAN, Dinçer YILDIZDAŞ, Özden ÖZGÜR HOROZ, Murat Türkeün ILGINEL, Demet LAFLI TUNAY

Turkish validity and reliability study of type 2 diabetes stigma assessment scale

Bahar İNKAYA, Ezgi KARADAĞ

Comparison of greater occipital nerve and greater occipital nerve + supraorbital nerve block effect in chronic medication overuse headache

Nermin TEPE, , Oktay Faysal TERTEMİZ