Assessment of Takayasu arteritis in routine practice with PETVAS, an 18F-FDG PET quantitative scoring tool

Assessment of Takayasu arteritis in routine practice with PETVAS, an 18F-FDG PET quantitative scoring tool

Background/aim: The aim of this study was to evaluate the value of the PET vascular activity score (PETVAS) during the follow-up of patients with Takayasu arteritis. Materials and methods: Takayasu arteritis patients who underwent 18F-Fluorodeoxyglucose (FDG) PET imaging were evaluated retrospectively. In 8 patients both 1 and 2-h imagings were also performed prospectively. For PETVAS, 9 arterial areas were scored between 0-3 according to the FDG uptake. Results: Forty-six images of 34 patients were evaluated. PETVAS was higher in patients with clinically active disease (p = 0.03) and in the C-reactive protein (CRP) elevated group among clinically inactive patients (p = 0.0015). PETVAS correlated with CRP (p = 0.003, r = 0.53) and erythrocyte sedimentation rate (p = 0.005, r = 0.41), whereas age, disease duration, immunosuppressive, and glucocorticoid (GC) treatments were not associated with PETVAS. First vs. 2nd-h PETVAS was similar in patients who had both 1st and 2nd h PET scans (p = 0.67). Conclusion: We observed higher PETVAS in patients with active disease and elevated acute phase reactants. Although scores in our study (performed at one-h) were lower compared to the original PETVAS study performed at two h, PETVAS seems to be a reliable tool to quantify FDG PET scores in routine practice.

___

  • 1. Direskeneli H, Aydin SZ, Merkel PA. Assessment of disease activity and progression in Takayasu’s arteritis. Clinical and Experimental Rheumatology 2011; 29(1 Suppl 64): S86-91.
  • 2. Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Annals of the Rheumatic Diseases 2018; 77(5): 636-643. doi:10.1136/annrheumdis-2017-212649
  • 3. Danve A, O’Dell J. The Role of 18F Fluorodeoxyglucose Positron Emission Tomography Scanning in the Diagnosis and Management of Systemic Vasculitis. International Journal of Rheumatic Diseases 2015; 18(7): 714-24. doi:10.1111/1756- 185X.12713
  • 4. Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A et al. The value of [18F]FDG-PET in the diagnosis of largevessel vasculitis and the assessment of activity and extent of disease. European Journal of Nuclear Medicine and Molecular Imaging 2005; 32(6): 674-81. doi:10.1007/s00259-004-1757-9
  • 5. Lee YH, Choi SJ, Ji JD, Song GG. Diagnostic accuracy of 18F-FDG PET or PET/CT for large vessel vasculitis: A metaanalysis. Zeitschrift für Rheumatologie 2016; 75(9): 924-931. doi:10.1007/s00393-015-1674-2
  • 6. Soussan M, Nicolas P, Schramm C, Katsahian S, Pop G et al. Management of large-vessel vasculitis with FDGPET: a systematic literature review and meta-analysis. Medicine (Baltimore), 2015; 94(14): e622. doi:10.1097/ MD.0000000000000622
  • 7. Cheng Y, Lv N, Wang Z, Chen B, Dang A. 18-FDG-PET in assessing disease activity in Takayasu arteritis: a meta-analysis. Clinical and Experimental Rheumatology 2013; 31(1 Suppl 75): S22-7.
  • 8. Slart RHJA, Writing group., Reviewer group et al. FDG-PET/ CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45(7): 1250- 1269. doi:10.1007/s00259-018-3973-8
  • 9. Bucerius J, Mani V, Moncrieff C, Machac J, Fuster V et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. European Journal of Nuclear Medicine and Molecular Imaging 2014; 41(2): 369-83. doi:10.1007/s00259-013-2569-6
  • 10. Blomberg BA, Bashyam A, Ramachandran A, Gholami S, Houshmand S et al. Quantifying [(1)(8)F]fluorodeoxyglucose uptake in the arterial wall: the effects of dual time-point imaging and partial volume effect correction. European Journal of Nuclear Medicine and Molecular Imaging 2015; 42(9): 1414-22. doi:10.1007/s00259-015-3074-x
  • 11. Martinez-Rodriguez I, Martinez-Amador N, Banzo I, Quirce R, Jimenez-Bonilla J et al. Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images. European Journal of Nuclear Medicine and Molecular Imaging 2014; 41(12): 2319-24. doi:10.1007/ s00259-014-2863-y
  • 12. Grayson PC, Alehashemi S, Bagheri AA, Civelek AC, Cupps TR et al. (18) F-Fluorodeoxyglucose-Positron Emission Tomography As an Imaging Biomarker in a Prospective, Longitudinal Cohort of Patients With Large Vessel Vasculitis. Arthritis & Rheumatology 2018; 70(3): 439-449. doi:10.1002/ art.40379
  • 13. Arend WP, Michel BA, Bloch DA, Hunder GG, Calabrese LH et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis & Rheumatology 1990; 33(8): 1129-34. doi:10.1002/art.1780330811
  • 14. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS et al. Takayasu arteritis. Annals of Internal Medicine 1994; 120(11): 919-29. doi:10.7326/0003-4819-120-11-199406010-00004
  • 15. Lee KH, Cho A, Choi YJ, Lee SW, Ha YJ et al. The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with takayasu arteritis. Arthritis & Rheumatology 2012; 64(3): 866-75. doi:10.1002/ art.33413
  • 16. Andrews J, Al-Nahhas A, Pennell DJ, Hossain MS, Davies KA et al. Non-invasive imaging in the diagnosis and management of Takayasu’s arteritis. Annals of the Rheumatic Diseases 2004; 63(8): 995-1000. doi:10.1136/ard.2003.015701.
  • 17. Arnaud L, Haroche J, Malek Z, Archambaud F, Gambotti L et al. Is (18)F-fluorodeoxyglucose positron emission tomography scanning a reliable way to assess disease activity in Takayasu arteritis? Arthritis & Rheumatology 2009; 60(4): 1193-200. doi:10.1002/art.24416.
  • 18. Webb M, Chambers A, AL-Nahhas A, Mason JC, Maudlin L et al. The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis. European Journal of Nuclear Medicine and Molecular Imaging 2004; 31(5): 627-34. doi:10.1007/ s00259-003-1429-1
  • 19. Karapolat I, Kalfa M, Keser G, Yalcin M, Inal V et al. Comparison of F18-FDG PET/CT findings with current clinical disease status in patients with Takayasu’s arteritis. Clinical and Experimental Rheumatology 2013; 31(1 Suppl 75): S15-21.
  • 20. Alibaz-Oner F, Dede F, Ones T, Turoglu HT, H Direskeneli. Patients with Takayasu’s arteritis having persistent acute-phase response usually have an increased major vessel uptake by 18F-FDG-PET/CT. Modern Rheumatology 2015; 25(5): 752- 5. doi:10.3109/14397595.2015.1012798
  • 21. Zhang X, Zhou J, Sun Y, Shi H, Ji Z et al. (18)F-FDG-PET/CT: an accurate method to assess the activity of Takayasu’s arteritis. Clinical Rheumatology 2018; 37(7): 1927-1935. doi:10.1007/ s10067-017-3960-7
  • 22. Rimland CA, Quinn KA, Rosenblum JS, Schwartz MN, Gribbons KB et al. Outcome Measures in Large-Vessel Vasculitis: Relationship Between Patient, Physician, Imaging, and Laboratory-Based Assessments. Arthritis Care & Research 2019; 72(9): 1296-1304. doi:10.1002/acr.24117
  • 23. Schramm N, Ingenhoff J, Dechant C, Treitl KM, Treitl M et al. Diagnostic accuracy of positron emission tomography for assessment of disease activity in large vessel vasculitis. International Journal of Rheumatic Diseases 2019; 22(8): 1371- 1377. doi:10.1111/1756-185X.13440
  • 24. Kang F, Han Q, Zhou X, Zheng Z, Wang S et al. Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. European Journal of Nuclear Medicine and Molecular Imaging 2020; 47(13): 3107-3117. doi:10.1007/ s00259-020-04871-2
  • 25. Lagneau P, Michel JB, Vuong PN. Surgical treatment of Takayasu’s disease. Annals of Surgery 1987; 205(2): 157-66. doi:10.1097/00000658-198702000-00010
  • 26. Gomez L, Chaumet-Riffaud P, Noel N, Lambotte O, Goujard C et al. Effect of CRP value on (18)F-FDG PET vascular positivity in Takayasu arteritis: a systematic review and per-patient based meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging 2018; 45(4): 575-581. doi:10.1007/s00259- 017-3798-x
  • 27. Lee SG, Ryu JS, Kim HO, Oh JS, Kim YG et al. Evaluation of disease activity using F-18 FDG PET-CT in patients with Takayasu arteritis. Clinical Nuclear Medicine 2009; 34(11): 749-52. doi:10.1097/RLU.0b013e3181b7db09
  • 28. Tezuka D, Haraguchi G, Ishihara T, Ohigashi H, Inagaki H et al. Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovascular Imaging, 2012; 5(4): 422-9. doi:10.1016/j.jcmg.2012.01.013
  • 29. Kobayashi Y, Ishii K, Oda K, Nariai T, Tanaka Y et al. Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. Journal of Nuclear Medicine 2005; 46(6): 917-22.
  • 30. Yamazaki M, Takano H, Miyauchi H, Daimon M, Funabashi N et al. Detection of Takayasu arteritis in early stage by computed tomography. International Journal of Cardiology 2002; 85(2- 3): 305-7. doi: 10.1016/s0167-5273(02)00252-8
  • 31. Dellavedova L, Carletto M, Faggioli P, Sciascera A, Del Sole A et al. The prognostic value of baseline (18)F-FDG PET/CT in steroid-naive large-vessel vasculitis: introduction of volumebased parameters. European Journal of Nuclear Medicine and Molecular Imaging 2016; 43(2): 340-348. doi:10.1007/s00259- 015-3148-9
  • 32. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L et al. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis & Rheumatology 2006; 55(1): 131-7. doi:10.1002/art.21699
  • 33. Prieto-González S, García-Martínez A, Tavera-Bahillo I, Hernández-Rodríguez J, Gutiérrez-Chacoff J et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. Medicine (Baltimore), 2015; 94(5): e486. doi:10.1097/ MD.0000000000000486
  • 34. Banerjee S, Quinn KA, Gribbons KB, Rosenblum JS, Civelek AC et al. Effect of Treatment on Imaging, Clinical, and Serologic Assessments of Disease Activity in Large-Vessel Vasculitis. The Journal of Rheumatology 2020; 47(1): 99-107. doi:10.3899/jrheum.181222
  • 35. Prieto-Gonzalez S, Depetris M, Garcia-Martinez A, EspigolFrigole G, Tavera-Bahillo I et al. Positron emission tomography assessment of large vessel inflammation in patients with newly diagnosed, biopsy-proven giant cell arteritis: a prospective, case-control study. Annals of the Rheumatic Diseases 2014; 73(7): 1388-92. doi:10.1136/annrheumdis-2013-204572
  • 36. Stellingwerff MD, Brouwer E, Lensen KJ, Rutgers A, Arends S et al. Different Scoring Methods of FDG PET/CT in Giant Cell Arteritis: Need for Standardization. Medicine (Baltimore), 2015; 94(37): e1542. doi:10.1097/MD.0000000000001542
  • 37. Camellino D, Morbelli S, Sambuceti G, Cimmino MA. Methotrexate treatment of polymyalgia rheumatica/giant cell arteritis-associated large vessel vasculitis. Clinical and Experimental Rheumatology 2010; 28(2): 288-9.
  • 38. Henes JC, Mueller M, Pfannenberg C, Kanz L, Kotter I. Cyclophosphamide for large vessel vasculitis: assessment of response by PET/CT. Clinical and Experimental Rheumatology 2011; 29(1 Suppl 64): S43-8.
  • 39. Quinn KA, Rosenblum JS, Rimland CA, Gribbons KB, Ahlman MA et al. Imaging acquisition technique influences interpretation of positron emission tomography vascular activity in large-vessel vasculitis. Seminars in Arthritis and Rheumatism 2020; 50(1): 71-76. doi:10.1016/j. semarthrit.2019.07.008.
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Pasireotide treatment in Cushing’s disease: A single tertiary center’s experience

Pınar KADIOĞLU, Serdar ŞAHİN, Emre DURCAN, Hande Mefkure ÖZKAYA, Gular KARİMOV, Şeyda Gül ÖZCAN

Evaluation of the frequency and intensity of COVID-19 in patients with ankylosing spondylitis under anti-TNF therapy

Sümeyye Merve TÜRK, Zeynep ÖZTÜRK, Damla KARATAŞ, Ünal ERKORKMAZ, Emel GÖNÜLLÜ

Proximal femoral nail antirotation versus cemented calcar-replacement hemiarthroplasty for unstable intertrochanteric fracture in elderly: an overall survival study

Bahattin Kerem AYDIN, Sadettin ÇİFTCİ, Fatih DURGUT, Erdem ŞAHİN

Linguistic validation of a widely used recovery score: quality of recovery-15 (QoR-15)

Sami EKSERT, Mehmet Burak EŞKİN, Serkan ŞENKAL, Umut KARA, Fatih ŞİMŞEK, Mehmet Özgür ÖZHAN, Mehmet Emin İNCE, Gökhan ÖZKAN, Ümit ALAKUŞ, Hasan KAMBUROĞLU

Tp-e interval, Tp-e/QT, and Tp-e/QTc ratios in patients with primary hyperparathyroidism and their relationship with cardiac arrhythmic events

Ferhat GÖKAY, Yücel YILMAZ, Yasin ŞİMŞEK, Şaban KELEŞOĞLU

Determination of the relationship between major histocompatibility complex alleles and childhood onset obsessive-compulsive disorder

Perçin PAZARCI, Salih ÇETİNER, Gökhan KARACAOĞLAN, Ümit LÜLEYAP, Ayşegül Yolga TAHİROĞLU, Yaşar SERTDEMİR, Gülşah EVYAPAN, Davut ALPTEKİN, Doğa LÜLEYAP, Akgün YAMAN

Validity and reliability of Fried frailty phenotype in Turkish population

Hacer DOĞAN VARAN, Muhammet Cemal KIZILARSLANOĞLU, Rana TUNA DOĞRUL, Olgun DENİZ, Süheyla ÇÖTELİ, Berna GÖKER

Clinical and imaging findings of patients diagnosed with adenovirus-positive pneumonia during 2015–2019 in Shanghai, China

Chunrong HUANG, Dong WEI, Yahui LIU, Guochao SHI

The impact of bone marrow-derived mesenchymal stem cells on experimental testicular torsion in rats

Emrah ŞENEL, Sabri DEMİR, Mehmet ZENGİN, Ahmet ERTÜRK, Yasemin Dere GÜNAL, Miyase ÇINAR, Siyami KARAHAN, Dinçer YILDIZ

The role of leptin in primary Sjögren syndrome: a clinical and histopathological assessment study

Kayhan BAŞAK, Mehmet Engin TEZCAN, Mustafa ERDOĞAN