Antiinflammatory effects of adalimumab, tocilizumab, and steroid on lipopolysaccharide-induced lung injury

Antiinflammatory effects of adalimumab, tocilizumab, and steroid on lipopolysaccharide-induced lung injury

Background/aim: Acute lung injury (ALI) is a major cause of death in the intensive care unit. Lipopolysaccharide (LPS) induced lung injury is the most widely used experimental ALI model and provides opportunities for new targeting therapy. In this study, we investigated the effects of tocilizumab, adalimumab, and methylprednisolone in LPS-induced acute lung injury. Materials and methods: Lung injury was established by intratracheal instillation of LPS. The rats were randomly divided into six groups: LPS, control, and treatment groups (adalimumab, tocilizumab, methylprednisolone, adalimumab + tocilizumab). Bronchoalveolar lavage (BAL) and lung tissues were collected at 48 h and 96 h following LPS administration from each group. For histological analysis, hematoxylin–eosin (H&E) staining was performed. The sections were obtained for immunohistochemical analysis. IL-6 and TNF-alpha immunoreactivity were measured. Results: Intratracheal LPS application resulted in inflammatory cell infiltration of interstitial and alveolar spaces and thickening of the alveolar wall. All treatment groups showed significantly amelioration compared to LPS at 48 h. Interestingly, adalimumab and adalimumab + tocilizumab groups showed a significant amelioration of the lung histoarchitecture, compared to the prednisolone group at 96 h (p = 0.028, p = 0.025, respectively). Compared to the control group, LPS stimulation resulted in a significant increase in IL-6 and TNF-alpha immunoreactivity (p < 0.001). IL-6 and TNF-alpha expression were markedly reduced in all treatment groups at 48 h but the reduction was greater in the adalimumab and tocilizumab group than in the steroid. Administration with adalimumab and/or tocilizumab effectively decreased expression of TNF-alpha (p = 0.001) and IL-6 (p < 0.001) at 96 h, but prednisolone did not exert an effective decrease (p > 0.05). Conclusion: Adalimumab and/or tocilizumab significantly reduce the release of proinflammatory cytokines and improve the tissue inflammation in the experimental model of ALI. Our results suggest that adalimumab and/or tocilizumab have a more potent antiinflammatory effect on lung injury than the steroid.Key words: Adalimumab, tocilizumab, steroid, acute lung injury

___

  • 1. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 2007; 369: 1553–1564. doi: 10.1016/S0140-6736(07)60604-7
  • 2. Zhang Y, Liang D, Dong L, Ge X, Xu F et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respiratory Research 2015; 16(1): 43. doi: 10.1186/ s12931-015-0199-1
  • 3. Du ZA, Sun MN, Hu ZS. Saikosaponin an Ameliorates LPSInduced Acute Lung Injury in Mice. Inflammation 2018; 41(1): 193-198. doi: 10.1007/s10753-017-0677-3
  • 4. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. Journal of Pathology 2004; 202(2): 145-156. doi: 10.1002/ path.1491
  • 5. Lei J, Wei Y, Song P, Li Y, Zhang T et al. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. European Journal of Pharmacology 2018; 818: 110-114. doi: 10.1016/j.ejphar.2017.10.029
  • 6. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology 2011; 127(3): 701-721.e1-70. doi: 10.1016/j. jaci.2010.11.050
  • 7. Bouros D, Alexandrakis MG, Antoniou KM, Agouridakis P, Pneumatikos I et al. The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for Acute Respiratory Distress Syndrome. BMC Pulmonary Medicine 2004; 4: 6. doi: 10.1186/1471-2466-4-6
  • 8. Butt Y, Kurdowska A, Allen TC. Acute Lung Injury: A Clinical and Molecular Review. Archives of Pathology & Laboratory Medicine 2016; 140(4): 345-350. doi: 10.5858/arpa.2015-0519- RA
  • 9. Xiao R, Chen R. Neutrophil gelatinase-associated lipocalin as a potential novel biomarker for ventilator-associated lung injury. Molecular Medicine Reports 2017; 15(6): 3535-3540. doi: 10.3892/ mmr.2017.6442
  • 10. Xu SY, Carlson M, Engström A, Garcia R, Peterson CG et al. Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils. Scandinavian Journal of Clinical and Laboratory Investigation 1994; 54(5): 365-376. doi: 10.3109/00365519409088436
  • 11. Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J et al. Expression of neutrophil gelatinase-associated lipocalin regulates epithelial morphogenesis in vitro. Journal of Biological Chemistry 2005; 280(9): 7875-7882. doi: 10.1074/jbc.M413192200
  • 12. Dong Z, Yuan Y. Accelerated inflammation and oxidative stress induced by LPS in acute lung injury: iotanhibition by ST1926. International Journal of Molecular Medicine 2018; 41(6): 3405-3421. doi: 10.3892/ ijmm.2018.3574.
  • 13. Qin M, Qiu Z. Changes in TNF-α, IL-6, IL-10 and VEGF in rats with ARDS and the effects of dexamethasone. Experimental and Therapeutic Medicine 2019; 17(1): 383-387. doi: 10.3892/ etm.2018.6926
  • 14. Fein AM, Calalang-Colucci MG. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Critical Care Clinics 2000; 16(2): 289-317. doi: 10.1016/s0749- 0704(05)70111-1
  • 15. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ et al. IL22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Medicine 2008; 14(3): 275-281. doi: 10.1038/ nm1710
  • 16. Rice P, Martin E, He JR, Frank M, DeTolla L et al. Febrilerange hyperthermia augments neutrophil accumulation and enhances lung injury in experimental gram-negative bacterial pneumonia. Journal of Immunology 2005; 174(6): 3676-3685. doi: 10.4049/jimmunol. 174.6.3676
  • 17. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology 2008; 295(3): L379-399. doi: 10.1152/ajplung.00010.2008
  • 18. Chen H, Bai C, Wang X. The value of the lipopolysaccharideinduced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 2010; 4(6): 773-783. doi: 10.1586/ers.10.71
  • 19. Lewis SR, Pritchard MW, Thomas CM, Smith AF. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database of Systematic Reviews 2019; 7(7): CD004477. doi: 10.1002/14651858.CD004477.pub3
  • 20. Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. The Lancet Respiratory Medicine 2017; 5(6): 524-534. doi: 10.1016/S2213-2600(17)30188-1
  • 21. Mokra D, Mikolka P, Kosutova P, Mokry J. Corticosteroids in Acute Lung Injury: The Dilemma Continues. International Journal of Molecular Sciences 2019; 20(19): 4765. doi: 10.3390/ ijms20194765
  • 22. Burmester GR, Panaccione R, Gordon KB, McIlraith MJ, Lacerda AP. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Annals of the Rheumatic Diseases 2013; 72(4): 517-524. doi: 10.1136/annrheumdis-2011-201244
  • 23. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I et al. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical Rheumatology 2020; 39(7): 2085-2094. doi: 10.1007/s10067- 020-05190-5
  • 24. Khiali S, Khani E, Entezari-Maleki T. A Comprehensive Review of Tocilizumab in COVID-19 Acute Respiratory Distress Syndrome. The Journal of Clinical Pharmacology 2020; 60(9): 1131-1146. doi: 10.1002/jcph.1693
  • 25. Chen KL, Lv ZY, Yang HW, Liu Y, Long FW et al. Effects of Tocilizumab on Experimental Severe Acute Pancreatitis and Associated Acute Lung Injury. Critical Care Medicine 2016; 44(8): e664-77. doi: 10.1097/CCM.0000000000001639
  • 26. Ibrahim YF, Moussa RA, Bayoumi AMA, Ahmed AF. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down-regulation of NF-κB/JNK: a possible role of P-glycoprotein. Inflammopharmacology 2020; 28(1): 215-230. doi: 10.1007/s10787-019-00628-y
  • 27. Kurt A, Tumkaya L, Kalkan Y, Turut H, Cure MC et al. Is adalimumab protective in ischemia-reperfusion injury in lung? Iranian Journal of Basic Medical Sciences 2015; 18(11): 1093- 1099
  • 28. Correger E, Marcos J, Laguens G, Stringa P, CardinalFernández P et al. Pretreatment with adalimumab reduces ventilator-induced lung injury in an experimental model. Revista Brasileira de Terapia Intensiva 2020; 32(1): 58-65. doi: 10.5935/0103-507x.20200010
  • 29. Tu GW, Shi Y, Zheng YJ, Ju MJ, He HY et al. Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage. Journal of Translational Medicine 2017; 15(1): 181. doi: 10.1186/s12967-017-1284-7
  • 30. Vega AM, Chupin C, Pascariu M, Privé A, Dagenais A et al. Dexamethasone fails to improve bleomycin-induced acute lung injury in mice. Physiological Reports 2019; 7(21): e14253. doi: 10.14814/phy2.14253
  • 31. Betsuyaku T, Shipley JM, Liu Z, Senior RM. Neutrophil emigration in the lungs, peritoneum, and skin does not require gelatinase B. American Journal of Respiratory Cell and Molecular Biology 1999; 20(6): 1303-1309. doi: 10.1165/ ajrcmb.20.6.3558
  • 32. Haegens A, Heeringa P, van Suylen RJ, Steele C, Aratani Y et al. Myeloperoxidase deficiency attenuates lipopolysaccharideinduced acute lung inflammation and subsequent cytokine and chemokine production. Journal of Immunology 2009; 182(12): 7990-7996. doi: 10.4049/ jimmunol.0800377
  • 33. Herfs M, Hubert P, Poirrier AL, Vandevenne P, Renoux V et al. Proinflammatory cytokines induce bronchial hyperplasia and squamous metaplasia in smokers: implications for chronic obstructive pulmonary disease therapy. American Journal of Respiratory Cell and Molecular Biology 2012; 47(1): 67-79. doi: 10.1165/rcmb.2011-0353OC
  • 34. Xie K, Yu Y, Pei Y, Hou L, Chen S et al. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock 2010; 34(1): 90-97. doi: 10.1097/SHK.0b013e3181cdc4ae
  • 35. Abraham E, Jesmok G, Tuder R, Allbee J, Chang YH. Contribution of tumor necrosis factor-alpha to pulmonary cytokine expression and lung injury after hemorrhage and resuscitation. Critical Care Medicine 1995; 23(8): 1319-1326. doi: 10.1097/00003246-199508000-00004
  • 36. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC et al. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990; 75(1): 40–47
  • 37. Lee J, Lee S, Zhang H, Hill MA, Zhang C et al. Interaction of IL-6 and TNF-alpha contributes to endothelial dysfunction in type 2 diabetic mouse hearts. PLoS One 2017; 12(11): e0187189. doi: 10.1371/journal.pone.0187189
  • 38. Antwi-Amoabeng D, Kanji Z, Ford B, Beutler BD, Riddle MS et al. Clinical outcomes in COVID-19 patients treated with tocilizumab: An individual patient data systematic review. Journal of Medical Virology 2020; 92(11): 2516-2522. doi: 10.1002/jmv.26038
  • 39. ElSeirafi MM, Hasan HM, Sridharan K, Zamoori A, Alkhawaja S et al. Efficacy and safety of tocilizumab in critically ill adults with COVID-19 infection in Bahrain: A report of 5 cases. Respiratory Medicine Case Reports 2020; 30: 101139. doi: 10.1016/j.rmcr.2020.101139
  • 40. Rilinger J, Kern WV, Duerschmied D, Supady A, Bode C et al. A prospective, randomised, double blind placebo-controlled trial to evaluate the efficacy and safety of tocilizumab in patients with severe COVID-19 pneumonia (TOC-COVID): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 470. doi: 10.1186/s13063- 020-04447-3
  • 41. Utz JP, Jinnur PK, Yi ES, Ryu JH, Midthun DE et al. Acute Bilateral Pulmonary Opacities Associated With Use of Tocilizumab. Journal of Clinical Rheumatology 2015; 21(7): 382-385. doi:10.1097/ RHU.0000000000000304
  • 42. Kohli R, Namek K. Adalimumab (Humira) induced acute lung injury. American Journal of Case Reports 2013; 14: 173-175. doi: 10.12659/AJCR.889200
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Factors influencing the length of stay in the palliative care unit in patients discharged home: results from a tertiary hospital in Turkey

İlker TAŞÇI, Hilal ZENGİN

Associations between the radiographic phenotypes and the presence of metabolic syndrome in patients with knee osteoarthritis

Berna GÖKER, Mukadder ERDEM, Mehmet Derya DEMİRAĞ, Berna GÜZEL, Düriye Sıla KARAGÖZ ÖZEN, Nizamettin GÜZEL

Effects of bevacizumab administration on the hypoxia - induced pulmonary hypertension rat model

Yasemen ADALI, Osman YILMAZ, Ali Necati GÖKMEN, Duygu GÜREL, Canan DEMİR, Şadiye Canan ÇOKER, Eyüp Sabri UÇAN, Meral KARAMAN

Mean platelet volume in familial Mediterranean fever related AA amyloidosis and comparison with common primary glomerular diseases

Rahmi YILMAZ, Emine Arzu AYHAN, Neriman Sıla KOÇ, Tolga YILDIRIM, Yunus ERDEM, Müge ÜZERK KİBAR, Berranur KÜTAHYA, Fatma İŞ, Mehmet ERDEVİR

Relationship between c-reactive protein to albumin ratio and coronary artery calcium score and CAD-RADS scores with coronary computed tomography angiography

Mehmet Akif ERDÖL, Kadriye GAYRETLİ YAYLA

The contribution of neurocognitive situation, physical capacity and daily life activities to quality of life in childhood acute lymphoblastic leukemia survivors

Zühre KAYA, Ülker KOÇAK, Şebnem SOYSAL, Elif KELEŞ GÜLNERMAN, Yağmur ÇAM, İdil YENİCESU, Bülent ELBASAN

Cross-cultural adaptation, reliability, and validity of the Turkish version of the obesityspecific quality of life questionnaire: quality of life, obesity, and dietetics (QOLOD) rating scale

Mehmet Enes GÖKLER, Nimetcan Mehmet YAĞMA, Egemen ÜNAL, Salih MOLLAHALİLOĞLU

1,25-dihydroxyvitamin D3 regulates t helper and b lymphocyte responses substantially in drug-naive primary Sjögren’s syndrome patients’ mononuclear cells

Deniz GENÇ, Emine Figen TARHAN, Merve SEZER KÜRKÇÜ, Burcu GÜNAYDIN

Allergic diseases in the elderly population: a single-center experience

Gökhan AYTEKİN, Fatih ÇÖLKESEN, Eray YILDIZ, Şevket ARSLAN, Recep EVCEN, Filiz SADİ AYKAN, Mehmet KILINÇ

Fatty acid-binding protein-4 as a biomarker predicting acromegaly-associated diabetes mellitus

Mustafa ÖZBEK, Erman ÇAKAL, Muhammed Erkam SENCAR, Murat ÇALAPKULU, Davut SAKIZ, İlknur ÖZTÜRK ÜNSAL, Sema HEPŞEN, Pınar AKHANLI, Hakan DÜĞER, Bekir UÇAN, Seyit Murat BAYRAM