1H-magnetic resonance spectroscopy in first episode and chronic schizophrenia patients

1H-magnetic resonance spectroscopy in first episode and chronic schizophrenia patients

Background/aim: The aim of this study was to compare metabolite levels of the dorsolateral prefrontal cortex (DLPFC), anterior cingulate gyrus (ACG), thalamus, and hippocampus in patients with chronic schizophrenia (CSPs) and first psychotic episode patients (FEPs) by the use of magnetic resonance spectroscopy (MRS). Materials and methods: Thirty CSPs, 20 FEPs, and 30 healthy subjects participated in this study. N-Acetylaspartate (NAA), creatine, choline (Cho), and myoinositol levels of the DLPFC, ACG, thalamus, and hippocampus were measured by 1H-MRS. Results: It was determined that the NAA/Cho ratio was lower in both the FEPs and CSPs than the healthy controls in the DLPFC. DLPFC Cho levels were also higher in CSPs than healthy controls. NAA levels in CSPs were significantly lower than in the control group in the hippocampus. There was no significant difference in neurometabolite levels and ratios in the ACG and thalamus between the groups. Conclusion: This study supports neuronal dysfunction or loss of neuronal integrity in the DLPFC and hippocampus in CSPs. FEPs showed less neuronal dysfunction in the DLPFC, but not in the hippocampus. Our results suggest that schizophrenic patients show brain metabolic changes with the onset of the disorder in the DLPFC; these changes could be more apparent in the hippocampus as the disease progresses to chronic stages.

___

  • 1. Barch DM. The cognitive neuroscience of schizophrenia. In: Cannon T, Mineka S, editor. Annual Review of Clinical Psychology, Vol. 1. Washington, DC, USA: American Psychological Association; 2005. pp. 321-353. 2. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 2009; 66: 811-822.
  • 3. Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and metaanalysis. Neuropsychopharmacology 2005; 30: 1949-1962.
  • 4. Yoo SY, Yeon S, Choi CH, Kang DH, Lee JM, Shin NY, Jung WH, Choi JS, Jang DP, Kwon JS. Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr Res 2009; 111: 86-93.
  • 5. Sigmundsson T, Maier M, Toone BK, Williams SC, Simmons A, Greenwood K, Ron MA. Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 2003; 64: 63-71.
  • 6. Tang CY,  Friedman J,  Shungu D,  Chang L,  Ernst T,  Stewart D, Hajianpour A, Carpenter D, Ng J, Mao X et al. Correlations between diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (1H MRS) in schizophrenic patients and normal controls. BMC Psychiatry 2007; 7: 25.
  • 7. Molina V,  Sánchez J,  Reig S,  Sanz J,  Benito C,  Santamarta C, Pascau J, Sarramea F, Gispert JD, Misiego JM et al. N-acetylaspartate levels in the dorsolateral prefrontal cortex in the early years of schizophrenia are inversely related to disease duration. Schizophr Res 2005; 73: 209-219.
  • 8. Ohrmann P,  Siegmund A,  Suslow T,  Pedersen A,  Spitzberg K, Kersting A, Rothermundt M, Arolt V, Heindel W, Pfleiderer
  • B. Cognitive impairment and in vivo metabolites in first-episode neuroleptic-naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study. J Psychiatr Res 2007; 41: 625-634.
  • 9. Sanches RF, Crippa JA, Hallak JE, de Sousa JP, Araújo D, Santos AC, Zuardi AW. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia. Braz J Med Biol Res 2008; 41: 1132-1141.
  • 10. Stanley JA, Vemulapalli M, Nutche J, Montrose DM, Sweeney JA,  Pettegrew JW,  MacMaster FP,  Keshavan MS. Reduced N-acetyl-aspartate levels in schizophrenia patients with a younger onset age: a single-voxel 1H spectroscopy study. Schizophr Res 2007; 93: 23-32.
  • 11. Zabala A, Sánchez-González J, Parellada M, Moreno DM, Reig S,  Burdalo MT,  Robles O,  Desco M,  Arango C. Findings of proton magnetic resonance spectrometry in the dorsolateral prefrontal cortex in adolescents with first episodes of psychosis. Psychiatry Res 2007; 156: 33-42.
  • 12. Bertolino A,  Sciota D,  Brudaglio F,  Altamura M,  Blasi G,  Bellomo A,  Antonucci N,  Callicott JH,  Goldberg TE, Scarabino T et al. Working memory deficits and levels of N-acetylaspartate in patients with schizophreniform disorder. Am J Psychiatry 2003; 160: 483-489.
  • 13. Bertolino A,  Callicott JH,  Mattay VS,  Weidenhammer KM,  Rakow R,  Egan MF,  Weinberger DR. The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 2001; 49: 39-46.
  • 14. Klär AA, Ballmaier M, Leopold K, Häke I, Schaefer M, Brühl R, Schubert F, Gallinat J. Interaction of hippocampal volume and N-acetylaspartate concentration deficits in schizophrenia: a combined MRI and 1H-MRS  study. Neuroimage 2010; 53: 51-57.
  • 15. Wood SJ,  Berger GE,  Wellard RM,  Proffitt T,  McConchie M,  Velakoulis D,  McGorry PD,  Pantelis C. A 1H-MRS investigation of the medial temporal lobe in antipsychoticnaïve and early-treated first episode psychosis. Schizophr Res 2008; 102: 163-170.
  • 16. Hasan A,  Wobrock T,  Falkai P,  Schneider-Axmann T,  Guse B,  Backens M,  Ecker UK,  Heimes J,  Galea JM,  Gruber O et al. Hippocampal integrity and neurocognition in firstepisode schizophrenia: a multidimensional study. World J Biol Psychiatry 2014; 15: 188-199.
  • 17. He ZL,  Deng W,  Li ML,  Chen ZF,  Collier DA,  Ma X,  Li T. Detection of metabolites in the white matter of frontal lobes and hippocampus with proton in first-episode treatment-naïve schizophrenia patients. Early Interv Psychiatry 2012; 6: 166- 175.
  • 18. Fannon D, Simmons A, Tennakoon L, O’Céallaigh S, Sumich A, Doku V, Shew C, Sharma T. Selective deficit of hippocampal N-acetylaspartate in antipsychotic-naive patients with schizophrenia. Biol Psychiatry 2003; 54: 587-598.
  • 19. Heckers S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001; 11: 520-528.
  • 20. Bertolino A,  Nawroz S,  Mattay VS,  Barnett AS,  Duyn JH,  Moonen CT,  Frank JA,  Tedeschi G,  Weinberger DR. Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 1996; 153: 1554-1563.
  • 21. Bertolino A,  Kumra S,  Callicott JH,  Mattay VS,  Lestz RM,  Jacobsen L,  Barnett IS,  Duyn JH,  Frank JA,  Rapoport JL et al. Common pattern of cortical pathology in childhoodonset and adult-onset schizophrenia as identified by proton magnetic resonance spectroscopic imaging. Am J Psychiatry 1998; 155: 1376-1383.
  • 22. Ohrmann P,  Kugel H,  Bauer J,  Siegmund A,  Kölkebeck K, SuslowT, Wiedl KH, Rothermundt M, Arolt V, Pedersen A. Learning potential on the WCST in schizophrenia is related to the neuronal integrity of the anterior cingulate cortex as measured by proton magnetic resonance spectroscopy. Schizophr Res 2008; 106: 156-163.
  • 23. Ende G, Braus DF, Walter S, Weber-Fahr W, Soher B, Maudsley AA, Henn FA. Effects of age, medication, and illness duration on the N-acetylaspartate signal of the anterior cingulate region in schizophrenia. Schizophr Res 2000; 41: 389-395.
  • 24. Braus DF, Ende G, Weber-Fahr W, Demirakca T, Tost H, Henn FA. Functioning and neuronal viability of the anterior cingulate neurons following antipsychotic treatment: MR-spectroscopic imaging in chronic schizophrenia. Eur Neuropsychopharmacol 2002; 12: 145-152.
  • 25. Deicken RF, Zhou L, Schuff N, Weiner MW. Proton magnetic resonance spectroscopy of the anterior cingulate region in schizophrenia. Schizophr Res 1997; 27: 65-71.
  • 26. Reid MA,  Stoeckel LE,  White DM,  Avsar KB,  Bolding MS,  Akella NS,  Knowlton RC,  den Hollander JA,  Lahti AC. Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biol Psychiatry 2010; 68: 625-633.
  • 27. Ohrmann P,  Siegmund A,  Suslow T,  Spitzberg K,  Kersting A, Arolt V, Heindel W, Pfleiderer B. Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 2005; 73: 153-157.
  • 28. Başoğlu C, Çetin M, Öner Ö, Ebrinç S, Semiz ÜB, Kandilcioğlu H,  Şilit E,  Kızılkaya E. Comparison of right thalamus and temporal cortex metabolite levels of drug-naive first-episode psychotic and chronic schizophrenia in patients. Türk Psikiyatri Derg 2006; 17: 85-91.
  • 29. Szulc A, Galińska B, Tarasów E, Walecki J, Dzienis W, Kubas B,  Czernikiewicz A. Clinical and neuropsychological correlates of proton magnetic resonance spectroscopy detected metabolites in brains of first-episode and schizophrenic patients. Psychiatr Pol 2003; 37: 977-988.
  • 30. Cecil KM, Lenkinski RE, Gur RE, Gur RC. Proton magnetic resonance spectroscopy in the frontal and temporal lobes of neuroleptic naive patients with schizophrenia. Neuropsychopharmacology 1999; 20: 131-140.
  • 31. Chang L, Friedman J, Ernst T, Zhong K, Tsopelas ND, Davis K. Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: implication for glial dysfunction. Biol Psychiatry 2007; 62: 1396-1404.
  • 32. First MB, Spitzer RL, Gibbon M. Structured Clinical Interview for DSM-IV Clinical Version (SCID-I/CV). Washington, DC, USA: American Psychiatric Press; 1997.
  • 33. Andreasen NC. The Scale for Assessment of Negative Symptoms (SANS). Iowa City, IS, USA: University of Iowa; 1983.
  • 34. Andreasen NC. The Scale for Assessment of Positive Symptoms (SAPS). Iowa City, IA, USA: University of Iowa; 1984.
  • 35. Guy W. ECDEU Assessment Manual for Psychopharmacology. Revised US Dept. of Health, Education and Welfare Publication (ADM). Rockville, MD, USA: National Institute of Mental Health; 1976.
  • 36. Nowinski WL. The Cerefy brain atlases: continuous enhancement of the electronic Talairach-Tournoux brain atlas. Neuroinformatics 2005; 3: 293-300.
  • 37. von Kienlin M. The basics of magnetic resonance spectroscopy. In: Methodology, Spectroscopy and Clinical MRI 15th Annual Scientific Meeting; 1998. pp. 3-7.
  • 38. Klose U. Measurement sequences for single voxel proton MR spectroscopy. Eur J Radiol 2008; 67: 194-201.
  • 39. Galińska B, Szulc A, Tarasów E, Kubas B, Dzienis W, Czernikiewicz A, Walecki J. Duration of untreated psychosis and proton magnetic resonance spectroscopy (1H-MRS) findings in first-episode schizophrenia. Med Sci Monit 2009; 15: 82-88.
  • 40. Galińska B,  Szulc A,  Tarasów E,  Kubas B,  Dzienis W,  Siergiejczyk L,  Czernikiewicz A,  Walecki J. Relationship between frontal N-acetylaspartate and cognitive deficits in first-episode schizophrenia. Med Sci Monit 2007; 13: 11-16.
  • 41. Natsubori T,  Inoue H,  Abe O,  Takano Y,  Iwashiro N,  Aoki Y, Koike S, Yahata N, Katsura M, Gonoi Wet al Reduced frontal glutamate + glutamine and N-acetylaspartate levels in patients with chronic schizophrenia but not in those at clinical high risk for psychosis or with first-episode schizophrenia. Schizophr Bull 2013; 40: 1128-1139. 
  • 42. Goto N,  Yoshimura R,  Kakeda S,  Moriya J,  Hayashi K,  Ikenouchi-Sugita A,  Umene-Nakano W,  Hori H,  Ueda N, Korogi Y et al. Comparison of brain N-acetylaspartate levels and serum brain-derived neurotrophic factor (BDNF) levels between patients with first-episode schizophrenia psychosis and healthy controls. Eur Psychiatry 2011; 26: 57-63.
  • 43. Jessen F,  Scherk H,  Träber F,  Theyson S,  Berning J,  Tepest R,  Falkai P,  Schild HH,  Maier W,  Wagner M et al. Proton magnetic resonance spectroscopy in subjects at risk for schizophrenia. Schizophr Res 2006; 87: 81-88.
  • 44. Block W,  Bayer TA,  Tepest R,  Träber F,  Rietschel M,  Müller DJ,  Schulze TG,  Honer WG,  Maier W,  Schild HH  et al. Decreased frontal lobe ratio of N-acetyl aspartate to choline in familial schizophrenia: a proton magnetic resonance spectroscopy study. Neurosci Lett 2000; 289: 147-151.
  • 45. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995; 38: 901- 909.
  • 46. Rudkin TM, Arnold DL. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 1999; 56: 919-926. 
  • 47. Buckley PF, Moore C, Long H, Larkin C, Thompson P, Mulvany F, Redmond O, Stack JP, Ennis JT, Waddington JL. 1H-magnetic resonance spectroscopy of the left temporal and frontal lobes in schizophrenia: clinical, neurodevelopmental, and cognitive correlates. Biol Psychiatry 1994; 36: 792-800.
  • 48. Bustillo JR, Rowland LM, Lauriello J, Petropoulos H, Hammond R,  Hart B,  Brooks WM. High choline concentrations in the caudate nucleus in antipsychotic-naive patients with schizophrenia Am J Psychiatry 2002; 159: 130-133.
  • 49. Schwerk A, Alves FD, Pouwels PJ, van Amelsvoort T. Metabolic alterations associated with schizophrenia: a critical evaluation of proton magnetic resonance spectroscopy studies. J Neurochem 2014; 128: 1-87.
  • 50. Bustillo JR, LaurielloJ, Rowland LM, Thomson LM, Petropoulos H, Hammond R, Hart B, Brooks WM. Longitudinal follow-up of neurochemical changes during the first year of antipsychotic treatment in schizophrenia patients with minimal previous medication exposure. Schizophr Res 2002; 58: 313-321.
  • 51. Callicott JH, Bertolino A, Egan MF, Mattay VS, Langheim FJ, Weinberger DR. Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am J Psychiatry 2000; 157: 1646-1651.
  • 52. Nasrallah HA, Skinner TE, Schmalbrock P, Robitaille PM. Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study. Br J Psychiatry 1994; 165: 481-485.
  • 53. Bertolino A, Callicott JH, Nawroz S, Mattay VS, Duyn JH, Tedeschi G, Frank JA, Weinberger DR. Reproducibility of proton magnetic resonance spectroscopic imaging in patients with schizophrenia. Neuropsychopharmacology 1998; 18: 1-9.
  • 54. Deicken RF, Pegues M, Amend D. Reduced hippocampal N-acetylaspartate without volume loss in schizophrenia. Schizophr Res 1999; 37: 217-223.
  • 55. Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. Multiregional 1H-MRSI of the hippocampus, thalamus, and basal ganglia in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2003; 253: 9-15.
  • 56. Kraguljac NV,  Reid M,  White D,  Jones R,  den Hollander J,  Lowman D,  Lahti AC. Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res 2012; 203: 111-125.
  • 57. Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 2004; 161: 154-156.
  • 58. Hazlett EA, Buchsbaum MS, Kemether E, Bloom R, Platholi J, Brickman AM, Shihabuddin L, Tang C, Byne W. Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia. Am J Psychiatry 2004; 161: 305-314.
  • 59. Young KA, Manaye KF, Liang C, Hicks PB, German DC. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000; 47: 944-953.
  • 60. Buchsbaum MS,  Someya T,  Teng CY,  Abel L,  Chin S,  Najafi A,  Haier RJ,  Wu J,  Bunney WE Jr. PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry 1996; 153: 191-199.
  • 61. Bustillo JR, Rowland LM, Mullins P, Jung R, Chen H, Qualls C, Hammond R, Brooks WM, Lauriello J. 1H-MRS at 4 tesla in minimally treated early schizophrenia. Mol Psychiatry 2010; 15: 629-636.
  • 62. Delamillieure P,  Constans JM,  Fernandez J,  Brazo P,  Benali K,  Courthéoux P,  Thibaut F,  Petit M,  Dollfus S. Proton magnetic resonance spectroscopy (1H MRS) in schizophrenia: investigation of the right and left hippocampus, thalamus, and prefrontal cortex. Schizophr Bull 2002; 28: 329-339.
  • 63. Hagino H, Suzuki M, Mori K, Nohara S, Yamashita I, Takahashi T, Kurokawa K, Matsui M, Watanabe N, Seto H et al. Proton magnetic resonance spectroscopy of the inferior frontal gyrus and thalamus and its relationship to verbal learning task performance in patients with schizophrenia: a preliminary report. Psychiatry Clin Neurosci 2002; 56: 499-507.
  • 64. Granata F, Pandolfo G, Vinci S, Alafaci C, Settineri N, Morabito R,  Pitrone A,  Longo M. Proton magnetic resonance spectroscopy (H-MRS) in chronic  schizophrenia. A singlevoxel study in three regions involved in a pathogenetic theory. Neuroradiol J 2013; 26: 277-283.
  • 65. Deicken RF, Johnson C, ElIaz Y, Schuff N. Reduced concentrations of thalamic N-acetylaspartate in male patients with schizophrenia. Am J Psychiatry 2000; 157: 644-647.
  • 66. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC. Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res 2001; 52: 87-99.
  • 67. Martínez-Granados B, Brotons O, Martínez-Bisbal MC, Celda B,  Martí-Bonmati L,  Aguilar EJ,  González JC,  Sanjuán J. Spectroscopic metabolomic abnormalities in the thalamus related to auditory hallucinations in patients with schizophrenia. Schizophr Res 2008; 104: 13-22.
  • 68. Omori M, Murata T, Kimura H, Koshimoto Y, Kado H, Ishimori Y, Ito H, Wada Y. Thalamic abnormalities in patients with schizophrenia revealed by proton magnetic resonance spectroscopy. Psychiatry Res 2000; 98: 155-162.
  • 69. Szulc A,  Galińska B,  Tarasów E,  Kubas B,  Dzienis W, Konarzewska B, Poplawska R, Tomczak AA, Czernikiewicz A, Walecki J. N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: a proton magnetic resonance spectroscopy (1H MRS) study. Med Sci Monit 2007; 13: 17-22.
  • 70. Steen RG, Hamer RM, Lieberman JA. MR spectroscopy in schizophrenia. J Magn Reson Imaging 2011; 34: 1251-1261.
  • 71. Smesny S,  Langbein K,  Rzanny R,  Gussew A,  Burmeister HP,  Reichenbach JR,  Sauer H. Antipsychotic drug effects on left prefrontal phospholipid metabolism: a follow-up 31P-2DCSI study of haloperidol and risperidone in acutely ill chronic schizophrenia patients. Schizophr Res 2012; 138: 164-170.
  • 72. Szulc A, Galinska B, Tarasow E, Waszkiewicz N, Konarzewska B, Poplawska R, Bibulowicz D, Simonienko K, Walecki J. Proton magnetic resonance spectroscopy study of brain metabolite changes after antipsychotic treatment. Pharmacopsychiatry 2011; 44: 148-157.
  • 73. Szulc A, Galińiska B, Tarasów E, Dzienis W, Kubas B, Konarzewska B, Waszkiewicz N, Popławska R. The influence of atypical antipsychotics on brain functioning in schizophrenia. A proton magnetic resonance study. Psychiatr Pol 2010; 44: 415-426.
  • 74. Lyoo IK, Renshaw PF. Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry 2002; 51: 195-207.