Immunomagnetic separation and Listeria monocytogenes detection with surface- enhanced Raman scattering

Background/aim: We aimed to develop a rapid method to enumerate Listeria monocytogenes L. monocytogenes utilizing magnetic nanoparticle based preconcentration and surface-enhanced Raman spectroscopy measurements. Materials and methods: Biological activities of magnetic Au-nanoparticles have been observed to have the high biocompatibility, and a sample immunosensor model has been designed to use avidin attached Au-nanoparticles for L. monocytogenes detection. Staphylococcus aureus S. aureus and Salmonella typhimurium S. typhimurium bacteria cultures were chosen for control studies. Antimicrobial activity studies have been done to identify bio-compatibility and bio-characterization of the Au-nanoparticles in our previous study and capturing efficiencies to bacterial surfaces have been also investigated. Results: We constructed the calibration graphs in various population density of L. monocytogenes as 2.2 × 101 to 2.2 × 106 cfu/mL and the capture efficiency was found to be 75%. After the optimization procedures, population density of L. monocytogenes and Raman signal intensity showed a good linear correlation R2 = 0.991 between 102 to 106 cfu/mL L. monocytogenes. The presented sandwich assay provides low detection limits and limit of quantification as 12 cfu/mL and 37 cfu/mL, respectively. We also compared the experimental results with reference plate-counting methods and the practical utility of the proposed assay is demonstrated using milk samples. Conclusion: It is focused on the enumeration of L. monocytogenes in milk samples and the comparision of results of milk analysis obtained by the proposed SERS method and by plate counting method stay in food agreement. In the present study, all parameters were optimized to select SERS-based immunoassay method for L. monocytogenes bacteria to ensure LOD, selectivity, precision and repeatablity.

___

  • 1. Farber JM, Peterkin PI. Listeria-Monocytogenes, a food-borne pathogen. Microbiological Reviews 1991; 55 (3): 476-511.
  • 2. Hayes PS, Feeley JC, Graves LM, Ajello GW, Fleming DW. Isolation of Listeria-monocytogenes from raw-milk. Applied and Environmental Microbiology 1986; 51 (2): 438-440.
  • 3. Naja G, Bouvrette P, Hrapovic S, Luong JHT. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007; 132 (7): 679-686.
  • 4. Aznar R, Alarcon B. PCR detection of Listeria monocytogenes: a study of multiple factors affecting sensitivity. Journal of Applied Microbiology 2003; 95 (5): 958-966.
  • 5. Carloni E, Rotundo L, Brandi G, Amagliani G. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes by magnetic capture hybridization and multiplex real-time PCR. Folia Microbiologica 2018; 63 (6): 735-742.
  • 6. Vizzini P, Braidot M, Vidic J, Manzano M. Electrochemical and optical biosensors for the detection of Campylobacter and Listeria: an update look. Micromachines 2019; 10 (8). doi: 10.3390/mi10080500
  • 7. Liebana S, Brandao D, Cortes P, Campoy S, Alegret S et al. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles. Analytica Chimica Acta 2016; 904: 1-9.
  • 8. Yan LJ, Zhao WS, Wen ZR, Li XY, Niu XL et al. Electrochemical DNA sensor for hly gene of Listeria monocytogenes by threedimensional graphene and gold nanocomposite modified electrode. International Journal of Electrochemical Science 2017; 12 (5): 4086-4095.
  • 9. Rahman SU, Stanton M, Casey PG, Spagnuolo A, Bensi G et al. Development of a click beetle luciferase reporter system for enhanced bioluminescence imaging of Listeria monocytogenes: Analysis in cell culture and murine infection models. Frontiers in Microbiology 2017; 8. doi: 10.3389/fmicb.2017.01797
  • 10. El Kheir SM, Cherrat L, Awussi AA, Ramia NE, Taha S et al. High-throughput identification of candidate strains for biopreservation by using bioluminescent Listeria monocytogenes. Frontiers in Microbiology 2018; 9. doi: 10.3389/fmicb.2018.01883
  • 11. Niu XL, Zheng W, Yin CX, Weng WJ, Li GJ et al. Electrochemical DNA biosensor based on gold nanoparticles and partially reduced graphene oxide modified electrode for the detection of Listeria monocytogenes hly gene sequence. Journal of Electroanalytical Chemistry 2017; 806: 116-122.
  • 12. Amagliani G, Brandi G, Omiccioli E, Casiere A, Bruce IJ et al. Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR. Food Microbiology 2004; 21 (5): 597-603.
  • 13. Scheu P, Gasch A, Berghof K. Rapid detection of Listeria monocytogenes by PCR-ELISA. Letters in Applied Microbiology 1999; 29 (6): 416-420.
  • 14. Curiale MS, Lepper W, Robison B. Enzyme-Linked Immunoassay for detection of Listeria-monocytogenes in dairy-products, seafoods, and meats - collaborative study. Journal of Aoac International 1994; 77 (6): 1472-1489.
  • 15. Zhang XG, Tsuji S, Kitaoka H, Kobayashi H, Tamai M et al. Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR Biosensor. Journal of Food Science 2017; 82 (10): 2357-2363.
  • 16. Boulade M, Morlay A, Piat F, Roupioz Y, Livache T et al. Early detection of bacteria using SPR imaging and event counting: experiments with Listeria monocytogenes and Listeria innocua. Rsc Advances 2019; 9 (27): 15554-15560.
  • 17. Li QR, Zhang S, Cai YX, Yang YX, Hu F et al. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique. International Journal of Food Science and Technology 2017; 52 (7): 1559-1566.
  • 18. Radhakrishnan R, Poltronieri P. Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors-Basel 2017; 7 (4). doi: 10.3390/bios7040063
  • 19. Liu HB, Du XJ, Zang YX, Li P, Wang S. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica Serotype enteritidis. Journal of Agricultural and Food Chemistry 2017; 65 (47): 10290-10299.
  • 20. Uusitalo S, Kogler M, Valimaa AL, Popov A, Ryabchikov Y et al. Detection of Listeria innocua on roll-to-roll produced SERS substrates with gold nanoparticles. Rsc Advances 2016; 6 (67): 62981-62989.
  • 21. Stambach NR, Carr SA, Cox CR, Voorhees KJ. Rapid detection of Listeria by bacteriophage amplification and SERS-Lateral flow immunochromatography. Viruses-Basel 2015; 7 (12): 6631-6641. 22. Sandhya S, Chen W, Mulchandani A. Molecular beacons: a realtime polymerase chain reaction assay for detecting Escherichia coli from fresh produce and water. Analytica Chimica Acta 2008; 614 (2): 208-212.
  • 23. Brandao D, Liebana S, Campoy S, Alegret S, Pividori MI. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study. Talanta 2015; 143: 198-204.
  • 24. Chen J, Park B. Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria. International Journal of Food Microbiology 2018; 267: 1-8.
  • 25. Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R et al. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Letters 2006; 6 (11): 2630-2636.
  • 26. Etchegoin P, Maher RC, Cohen LF, Hartigan H, Brown RJC et al. New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS). Chemical Physics Letters 2003; 375 (1-2): 84-90.
  • 27. Brown RJC, Milton MJT. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). Journal of Raman Spectroscopy 2008; 39 (10): 1313-1326.
  • 28. Guven B, Boyaci IH, Tamer U, Acar-Soykut E, Dogan U. Development of rolling circle amplification based surfaceenhanced Raman spectroscopy method for 35S promoter gene detection. Talanta 2015; 136: 68-74.
  • 29. Wang JF, Wu XZ, Wang CW, Rong Z, Ding HM et al. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. Acs Applied Materials & Interfaces 2016; 8 (31): 19958-19967.
  • 30. Song D, Yang R, Fang SY, Liu YP, Long F et al. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchimica Acta 2018; 185 (10). doi: 10.1007/s00604-018-3020-2
  • 31. Sharma HSS, Carmichael E, McCall D. Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid. Vibrational Spectroscopy 2016; 83: 159-169.
  • 32. Liu GK, Ren B, Wu DY, Lin TM, Gu RA et al. Electrochemical polymerization of acetylene on Rh electrodes probed by surfaceenhanced Raman spectroscopy. Journal of Electroanalytical Chemistry 2006; 594 (2): 73-79.
  • 33. Wang P, Xia M, Liang O, Sun K, Cipriano AF et al. LabelFree SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Analytical Chemistry 2015; 87 (20): 10255-10261.
  • 34. Wang CW, Wang JF, Li M, Qu XY, Zhang KH et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 2016; 141 (22): 6226-6238.
  • 35. Yegenoglu H, Aslim B, Guven B, Zengin A, Boyaci IH et al. The comparison of antioxidant capacity and cytotoxic, anticarcinogenic, and genotoxic effects of Fe@Au nanosphere magnetic nanoparticles. Turkish Journal of Biology 2017; 41 (2): 302-313.
  • 36. Reinheimer JA, Demkow MR, Candioti MC. Inhibition of coliform bacteria by lactic cultures. Australian Journal of Dairy Technology 1990; 45 (1): 5-9.
  • 37. Wang YL, Lee K, Irudayaraj J. SERS aptasensor from nanorodnanoparticle junction for protein detection. Chemical Communications 2010; 46 (4): 613-615.
  • 38. Alhogail S, Suaifan GARY, Zourob M. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosensors & Bioelectronics 2016; 86: 1061-1066.
  • 39. Zhang LS, Huang R, Liu WP, Liu HX, Zhou XM et al. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosensors & Bioelectronics 2016; 86: 1-7.
  • 40. Guo Y, Zhao C, Liu Y, Nie H, Guo X et al. A novel fluorescence method for the rapid and effective detection of Listeria monocytogenes using aptamer-conjugated magnetic nanoparticles and aggregation-induced emission dots. Analyst 2020. doi: 10.1039/D0AN00397B
Turkish Journal of Medical Sciences-Cover
  • ISSN: 1300-0144
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Validating the Turkish version of the Weinstein noise sensitivity scale: effects of age, sex, and education level

Melis KESKİN YILDIZ, Yusuf Kemal KEMALOĞLU, Yetkin TUAÇ, Güven MENGÜ, Çağıl GÖKDOĞAN, Recep KARAMERT

Does capsaicin have therapeutic benefits in human colon adenocarcinoma? Selection of the most reliable dose via AgNOR

Mustafa NİSARİ, Recep ERÖZ

Reza VAZIRINEJAD, Roya NAJAFIPOUR, Mohsen REZAEIAN, Alıreza GHAZIZADEH, Fateme Doost MOHAMMADI

Tolgahan ÇATLI, Taşkın TOKAT, Ergül BAŞARAN BOZKURT, Zehra Hilal ADIBELLİ, Uğurtan ERGÜN, Enver ALTAŞ, Levent OLGUN

Ekrem AKSU, Ejder BERK, Abdullah SÖKMEN, Gülizar SÖKMEN, Enes ÇELİK

Cross-cultural adaptation, reliability and validity of the Turkish version of Patient-Specific Functional Scale in patients with chronic neck pain

Gamze YALÇINKAYA, Bilge KARA, Mehmet Nuri ARDA

Çağrı DAMAR, Betül Emine DERİNKUYU, Muazzez Asburçe Bike Olgaç KILIÇKAYA, Mehmet ÖZTÜRK, Çiğdem ÖZTUNALI, Ayşe Gül ALIMLI, Öznur Leman BOYUNAGA, Murat UÇAR, Fatih Süheyl EZGÜ, Leyla TÜMER, Alp Özgün BÖRCEK, Ahmet SIĞIRCI

Changes in P1 latencies of children with normal hearing and those with cochlear implants

Emre ESKİCİOĞLU, Günay KIRKIM, Selhan GÜRKAN, Serpil MUNGAN DURANKAYA, Tahsin Oğuz BAŞOKÇU, Enis Alpin GÜNERİ

Correlation between the Glasgow-Blatchford score, shock index, and Forrest classification in patients with peptic ulcer bleeding

Hong YANG, Chen PAN, Qi LIU, Yan WANG, Zhe LIU, Jingjing LEI, Xian CAO

Body awareness and chronic low back pain: validity and reliability study of Turkish version of body awareness rating scale

Özlem ÜLGER, Utku BERBEROĞLU, Aynur DEMİREL, Dilara ONAN, Yasemin ÖZEL ASLIYÜCE, Müzeyyen ÖZ